Водоподготовка воды в котельных

Водоподготовка воды в котельных

КОТЛЫ ВОДОГРЕЙНЫЕ И ПАРОВЫЕ

Вода, одновременно являющаяся дешевым теплоносителем и универсальным растворителем, может представлять угрозу для водонагревательного и парового котлов. Риски, в первую очередь, связанны с наличием в воде определенных примесей. Решение и предотвращение проблем в работе котельного оборудования невозможно без четкого понимания их причин, а так же знания современных технологий подготовки воды.

Для котловых систем характерны три группы проблем, связанных с присутствием в воде следующих примесей:

  • нерастворенных механических;
  • растворенных осадкообразующих;
  • коррозионноактивных.

Каждый тип примесей может служить причиной выхода из строя того или иного оборудования установки, а так же вносит свой вклад в снижение эффективности и стабильности работы котла. Использование в системах воды, не прошедшей механическую фильтрацию, приводит к наиболее грубым поломкам— выходу из строя циркуляционных насосов, уменьшению сечения, повреждению трубопроводов, запорной и регулировочной арматуры. Обычно механические примеси— это песок и глина, присутствующие как в водопроводной так и в артезианской воде, а так же продукты коррозии трубопроводов, теплопередающих поверхностей и других металлических частей, которые находятся в постоянном контакте с агрессивной водой. Растворенные примеси могут вызывать серьезные неполадки в работе энергетического оборудования, которые обуславливаются:

  • образованием накипных отложений;
  • коррозией котловой системы;
  • вспениванием котловой воды и уносом солей с паром.

Эта группа примесей требует особого внимания, поскольку их присутствие в воде зачастую не так очевидно, как наличие механических примесей, а последствия от их воздействия на котельное оборудование могут быть весьма печальны— от снижения энергоэффективности системы, до полного ее разрушения.

Карбонатные отложения, вызываемые повышенной жесткостью воды— хорошо известный результат процессов накипеобразования, протекающем даже в неизношенном оборудовании, однако далеко не единственный. Так при нагреве воды выше 130°Срезко снижается предельнаярастворимость сульфатов кальция, что приводит образованию особоплотной накипи гипса

Температура воды (в градусах Цельсия) Предельная растворимость CaSO4 (г/м 3 )
20 200
100 1500
150 500
200 200

Образующиеся накипные отложения ухудшают теплопередачу теплообменных поверхностей, что приводит к перегреву стенок котла и снижению срока его службы, а так же к увеличению потери тепла. Ухудшение теплообмена приводит к перерасходу энергоносителей, что отражается на эксплуатационных затратах. Образование на поверхности нагрева даже незначительного по толщине (0,1-0,2мм) слоя отложений приводит к перегреву металла и, как следствие, появлению отдушин, свищей и даже разрыву труб.

Образование накипи является однозначным признаком использования в котловой системе воды низкого качества. В этом случае неизбежно развитие коррозии металлических поверхностей и накоплении вместе с накипными отложениями, продуктов окисления металлов.

В котловых системах могут происходить два типа коррозионных процессов: химическая и электрохимическая коррозия. Электрохимическая коррозия связанна с образованием большого количества микрогальванических пар на металлических поверхностях. В большинстве случаев коррозия возникает в неплотностях металлических швов и развальцованных концов теплообменных труб; результатом таких поражений являются кольцевые трещины. Основными стимуляторами коррозии являются растворенный кислород и углекислый газ.

Если конструкции выполнены из черного металла, отклонение от диапазона рН 9-10 приводит к развитию коррозии. В случае алюминиевых конструкций превышение рН 8,3-8,5 приводит к разрушению пассивирующей пленки и коррозии металла. Особое внимание следует обращать на поведение газов в котловых системах.С повышением температуры растворимость газов снижается — происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность кислорода и диоксида углерода. Кроме того, в процессе нагрева и испарения воды происходит разложение гидрокарбонатов на карбонаты и диоксид углерода, который уносится вместе с паром и обуславливает снижение рН и высокую коррозийную активность конденсата. Поэтому при выборе схемы химводоочистки и внутрикотловой обработки следует предусматривать способы нейтрализации кислорода у диоксида углерода.

Другой вид химической коррозии— хлоридная коррозия. Из-за своей высокой растворимости, хлориды присутствуют во всех доступных источниках водоснабжения.Они разрушаютпассивирующую пленку на поверхности металла, что стимулирует развитие вторичных коррозийных процессов. Гранично-допустимая концентрация хлоридов в воде котловых систем— 150-200 мг/л.

Накипеобразование и коррозионные процессы являются результатом использования в котловой системе воды низкого качества— химически нестабильной и агрессивной.Эксплуатировать котловые системы на такой воде экономически нецелесообразно и опасно с точки зрения техногенных рисков.

Обычно в качестве источников водоснабжения котловых систем используются водопровод или артезианские скважины. Каждый тип воды имеет свои недостатки и набор типичных проблем. Первый типичной проблемой любой воды являются соли кальция и магния, обуславливающие общую жесткость. В Российской Федерации, в зависимости от региона и типа источника водоснабжения, жесткость как водопроводной, так и артезианской вод, обычно, находится в пределах 2-20мг-экв/л.Другой типичной примесью являются растворенные соли железа, содержание которых может находиться в интервале 0,3-20 мг/л. При этом в большинстве артезианских скважин концентрация растворенного железа превышает 3 мг/л.

Котловые системы по их назначению принято подразделять на водогрейные и паровые. Для каждого типа существует свой набор требований кхимочищенной воде, которые также зависят от мощности котла и температурного режима. Требования к количеству воды для котловых систем устанавливаются на уровне, обеспечивающем эффективность и безопасность работы котла при минимальном риске образования отложений и коррозии. Разработку официальных требований осуществляют надзорные органы (Бсэнергонадзор), однако эти требования всегда мягче рекомендаций производителя, которые устанавливаются исходя из гарантийных обязательств. В Европейском Союзе требования производителей проходят всестороннюю экспертизу в органах стандартизации и профильных организациях с точки зрения эффективности и длительной эксплуатации котла. Поэтому целесообразно ориентироваться именно на эти требования.

Расход подпиточной воды для котловых систем и требования к ее качеству определяют оптимальный набор водоочистительного оборудования и схему химводоотчистки. Особое внимание во всех нормативных документах, касающихся качества подпиточной воды, уделяется таким показателям как: жесткость, РН, содержание кислорода и углекислоты.

Водогрейные котлы

Системы водогрейных котлов относятся к системам закрытого типа. В этих системах вода не должна изменять свой состав. Закрытая система заполняется химически отчищенной водой один раз и не требует постоянной подпитки. Потери обычно случаются из-за протечек в трубопроводах или вследствие ошибок в обслуживании. При правильной эксплуатации пополнение химически очищенной водой в водогрейных контурах осуществляется перед началом отопительного сезона или не чаще, чем один раз в год (исключением является аварийная ситуация).

Читайте также:  Import wizard altium designer

Однако если речь идет о бытовом водогрейном котле, система химводоотчистки используется так же для постоянного холодного и горячего водоснабжения.

Обязательное условие для всех видов воды, используемой в котлах всех типов— отсутствие взвешенных примесей и окраски. Для охладительных систем с предписанными рабочими температурами до 100°с большинство производителей используют упрощенные требования к качеству воды, минимизирующие только уровень общей жесткости.

Для отопительных установок с допустимой температурой нагрева выше 100°С, рекомендуется использование деминерализованной или умягченной воды, и в зависимости от типа устанавливаются нормативы ее качества.

Водоподготовка котельных установок на сегодняшний день является обязательным атрибутом в рабочем процессе любой отдельно взятой котельной.

Система водоподготовки котельной устанавливается для того, чтобы предотвратить формирование минеральных отложений, которые накапливаются внутри водонагревательных котлов.

Станция водоподготовки, блочно модульная

Несомненно, качественная водоподготовка для котлов является гарантией эффективного и безаварийного функционирования всего оборудования в течение отопительного сезона.

1 Зачем нужно очищать воду для котельной?

Водоподготовка для паровых котлов представлена в виде процесса, который заключается в том, что перед подачей воды в котельную производится ее предварительная обработка.

Очистка воды происходит благодаря применению многоступенчатых блоков-фильтров. В процессе обработки воды для водогрейных и судовых котлов, встроенное оборудование из жесткой рабочей среды, в процессе умягчения, преобразовывает ее исходные свойства.

Оборудование, обеспечивающее умягчение воды для водогрейных систем и систем газового отопления эффективно производит умягчение жесткой воды.

В процессе умягчения и последующей очистки, из жесткой воды оборудование удаляет большинство растворенных в ней загрязнителей.

Причинами жесткой рабочей среды являются концентрированные минеральные соли и механические примеси грубодисперсного типа.

Водоподготовка котельной, фильтры первичной очистки

Первичный этап умягчения и дальнейшего процесса водоподготовки в водогрейных и судовых котлах, а также ее очистка не представляет высокой сложности.

Очистка жесткой воды производится с применением обычного набора методов физической обработки, с помощью средств механической фильтрации.

Второй этап процесса водоподготовки более сложен и трудоемок. Для того чтобы очистка жесткой воды и ее последующее умягчение прошло как можно более эффективно, необходимо позаботиться об удалении растворенных в рабочей среде минеральных солей.

Умягчение и поэтапная очистка судовых и водогрейных котлов, а также газового оборудования производится с применением наиболее современного и высокоэффективного метода тонкой очистки воды.

Он основан на включении специальных мембранных технологий, обеспечивающих умягчение и последующую очистку судовых и водогрейных котельных.

Смягчители здесь не употребляются ввиду применения методов обратного осмоса и ультрафильтрации.
к меню ↑

2 Расчет системы

Водоподготовка, очистка и умягчение водогрейных систем производится после того, как будет проведен предварительный расчет.

Водоподготовка котла, установка удаления накипи из воды

Расчет включает в себя сбор и систематизацию данных о протяженности судовых водонагревательных систем, и степени их засоренности.

Водоподготовка котельных и последующая очистка системы транспортировки теплоносителя подразделяется на несколько основных этапов. Это:

  • Начальная очистка от взвесей, коллоидов и органики;
  • Процесс смягчения (деминерализации);
  • Аннигиляция агрессивных газов СО2 и О2;
  • Коррекционная постобработка и расчет следующей очистки.

Даже в тех системах теплоснабжения, где применяется современное оборудование и производится расчет всех параметров работы, происходит непланомерная утечка теплопередающего вещества.

В тех котельных, оборудование которых представлено в виде стальных и чугунных котлов утечка компенсируется так называемой подпилочной водой.

Эта вода проходит обязательный этап предварительной подготовки, в процессе которой применяются смягчители.

Смягчитель находится в установках, обеспечивающих химическую водоочистку. В них включены осветлительные и коагуляционные аппараты и многоступенчатые водоумягчительные фильтры.

Магнитный фильтр, удаляет накипь в воде

В большинстве случаев, котельные, которые обеспечивают отопление, снабжаются водой из водопровода, которую уже не нужно подвергать очищению.

Эта вода лишь подвергается смягчению и дегазации. Дело в том, что водопроводная вода наполнена высоким содержанием солей и газов.

В процессе ее постепенного нагревания соли трансформируются в осадочные отложения. Они выпадают в осадок и накапливаются на внутренней рабочей поверхности стенок котлов.

В процессе увеличения слоистых отложений накипи, существенно понижается коэффициент теплоотдачи.

Впоследствии это приводит к значительному перерасходу топлива. Кроме того, осадки в виде накипи, могут спровоцировать аварийную ситуацию, вызванную перегревом стенок котла.

Растворенные в виде газообразных примесей кислородные и углекислотные соединения провоцируют интенсивное развитие вредоносных коррозийных процессов.

Ввиду того, что котлы, выполненные с применением чугуна, практически не повержены возникновению коррозии кислород и углекислоты представляют опасность лишь для стальных агрегатов.

Система фильтрации, промышленная

Во избежание формирования накипи на котлах нужно применять воду, обладающую нужной степенью жесткости, или же подвергать ее смягчению и дальнейшей дегазации.

Дегазация производится посредством вакуумдеаэрации. Умягчитель воды для котлов имеет несколько разновидностей, каждая из которых обладает собственными особенностями и характеристиками.

Смягчитель может быть представлен в виде химического фильтра, содержащего полифосфатные соли.

Важно производить своевременную засыпку смягчающего вещества, при этом следует учитывать, что жидкость, которая будет образовываться на выходе, не пригодна для питья.

Ионообменные смягчители несколько дороже, но способны проработать продолжительное время на одной загруженной порции вещества.

Могут входить в состав оборудования, в котором все этапы промывки и регенерации подвержены полной автоматизации.

Магнитные смягчители для котлов представлены в виде универсальных систем и способны оказывать воздействие на воду на большом расстоянии.

Наибольшую эффективность демонстрируют установки, работающие с применением электромагнитного генератора.

Умягчитель воды для котла, со сменным фильтром

Читайте также:  Как делать вино из фруктов

В настоящее время не существует жестко установленных норм, которые определяют качество питательной и подпиточной воды для котлов. Ранее установленная норма жесткости составляла 300 мкг-экв/л.

2.1 Какие способы водоподготовки котельной?

В настоящее время способов водоподготовки котельных существует немало. Каждый из них обладает собственными технологическими особенностями и тонкостями. Это:

  • Осаждение;
  • Химические способы (коагуляция, флокуляция, адсорбация);
  • Обратный осмос;
  • Ионный обмен;
  • Безреагентная водоподготовка.

При осаждении все твердые частицы, взвешенные в воде, оседают на фильтрующей поверхности устройства и внутри его.

Фильтр очистки, магнитный, съемный

Осаждение протекает благодаря включению в состав воды специальных реагентов. Данный способ отлично зарекомендовал себя при выведении каллоидных и взвешенных частиц.

Является наиболее быстрым, простым и эффективным методом смягчения и очистки. Обратный осмос протекает с помощью включения в систему очистки специальной мембраны.

Она способно производить эффективную фильтрацию практически всех находящихся воде примесей, имеющих органическое происхождение.

Эта же мембрана может неплохо отфильтровывать вирусы и бактерии. Обратный осмос слишком тщательно производит очистку воды, потому она обедняется.

Мембрана стоит недешево, и может с легкостью повредиться от большого количества загрязнения. Этот способ не обладает высокой скоростью очищения воды от вредоносных посторонних примесей.

Это обусловлено полупроницаемостью мембраны. При проведении водоподготовки посредством ионного обмена основным элементом будет служить специальная смола.

Ей заполняется картридж. В состав смолы входят ионы натрия, которые подготовлены к последующему обмену.

Фильтр умягчитель, для котельной, бытовой

Он осуществляется при наступлении контакта с водой, обладающей высокими показателями жесткости.

В процессе фильтрации соли замещаются натрием или вода приобретает мягкость. Недостаток данного метода заключается в постоянной необходимости замены картриджей.

Химические реагенты при проведении водоподготовки осуществляются с применением специальных окислителей.

В большинстве случаев они представлены в виде кислорода, озона, хлорамина, перекиси водорода или марганцовки.

Наиболее сильным дезинфектором считается хлор. Он проявляет высокую степень стойкости и активности даже после полного растворения.

Перманганат кальция применяется как восстановитель. Перекись водорода используется в малых дозировках ввиду высокой степени токсичности.

Озон общепризнанно считается наиболее сильным окислителем. Он отличается высокой степенью экологичности, однако его стоимость высока, по сравнению с другими реагентами.

Фильтр обратного осмоса, многоуровневый, для котельной,

Безреагентные методы смягчения жесткой воды производятся с помощью магнитных, ультразвуковых и электромагнитных установок.

Очистка основывается на интенсивном воздействии электромагнитных полей, волн или ультразвука.

В процессе этого, новые вещества не создаются ввиду того, что все процессы основываются на физической основе.

Безреагентные устройства получили широкое распространение в тепловых системах квартир и частных домов.
к меню ↑

2.2 Оборудование

В настоящее время оборудование, которое обеспечивает водоочистку и водоподготовку котельных представлено виде различных установок и фильтров.

Загрузочные баллонные фильтры применяются в котельных, установленных в частных домах. Работают они, основываясь на принципе механической фильтрации.

Фильтры для котельной, параллельно очищающие, синхронные

Некоторые из моделей могут выполнять функцию обезжелезивателя. Основное преимущество представленного оборудования – это сравнительно невысокая стоимость.

Устройства мембранной водоочистки (умягчители) отличаются диаметром и толщиной главного рабочего элемента – мембраны.

Ее размер варьируется в диапазоне от 2 до 100 мкм. Современные модели снабжены специальным блоком автоматики.

Это способствует максимальному уровню удобства при осуществлении управления над прибором. Данные установки способствуют эффективному предотвращению формирования накипи в трубопроводных отопительных системах и котлах.

Ультрафиолетовые обеззараживатели способны быстро очистить воду от различных разновидностей болезнетворных бактерий и солей тяжелых металлов.

Также могут применяться ртутные бактерицидные лампы. Они могут работать в условиях низкого давления. Отличаются высоким КПД и продолжительными эксплуатационными сроками.
к меню ↑

Нормы проектирования водоподготовки отопительных и промышленных котельных определяются СНиП II-35-76* «Котельные установки». Согласно этому документу «Водно-химический режим работы котельной должен обеспечивать работу котлов, пароводяного тракта, теплоиспользующего оборудования и тепловых сетей без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях, получение пара и воды требуемого качества». Состав системы водоподготовки в котельной (в теплоэнергетике принято сокращение ВПУ – водоподготовительная установка) определяется качеством исходной воды, требованиями к очищенной воде, производительностью установки. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Вода в теплоэнергетике. Термины и определения.

Вода, используемая для паровых и водогрейных котлов, в зависимости от технологического участка, имеет разные наименования, закрепленные в нормативных документах:

Сырая вода – вода из источника водоснабжения, не прошедшая очистку и химическую обработку.

Питательная вода – вода на входе в котел, которая должна соответствовать заданным проектом параметрам (химический состав, температура, давление).

Добавочная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды и пара в пароконденсатном тракте.

Подпиточная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды в теплопотребляющих установках и тепловых сетях.
Котловая вода — вода, циркулирующая внутри котла.

Прямая сетевая вода – вода в напорном трубопроводе тепловой сети от источника до потребителя тепла.

Обратная сетевая вода – вода в тепловой сети от потребителя до сетевого насоса.

Источниками сырой воды могут быть реки, озера, артезианские и грунтовые скважины, городской или поселковый водопровод. Для каждого источника характерны различные примеси и загрязнения, поэтому подбор ВПУ начинают с анализа образца сырой воды. Анализ воды должна проводить специализированная аккредитованная лаборатория. Для поверхностных источников необходимы несколько анализов в разные сезоны, так как состав воды нестабилен.
Обращаясь к нормативной документации для определения требований к подготавливаемой воде необходимо также знать тип используемого котла.

Классификация котлов. Термины и определения.

Все котлы можно разделить на:
— паровые котлы , предназначенные для получения пара;
— водогрейные котлы , предназначенные для нагрева воды под давлением;
— пароводогрейные , предназначенные для получения пара и нагрева воды под давлением.

Читайте также:  Благоприятные дни для высадки рассады

По способу получения энергии для нагрева воды или получения пара котлы делятся на:
— Энерготехнологические – котлы, в топках которых осуществляется переработка технологических материалов (топлива);
— Котлы-утилизаторы – котлы, в которых используется теплота отходящих горячих газов технологического процесса или двигателей;
— Электрические – котлы, использующие электрическую энергию для нагрева воды или получения пара.

По типу циркуляции рабочей среды котлы делятся на котлы с естественной и принудительной циркуляцией . В зависимости от количества циркуляций, котлы могут быть прямоточные – с однократным движением рабочей среды, и комбинированные – с многократной циркуляцией.

Относительно движения рабочей среды к поверхности нагрева выделяют:
— Газотрубные котлы , в которых продукты сгорания топлива движутся внутри труб поверхностей нагрева, а вода и пароводяная смесь – снаружи труб.
— Водотрубные котлы , в которых вода или пароводяная смесь движется внутри труб, а продукты сгорания топлива – снаружи труб.

Пепейдя по ссылке можно найти нормативную документацию, в которой указаны требования к качеству воды.

Помимо нормативной документации необходимо учесть рекомендации производителя котла, указанные в инструкции по эксплуатации/ руководстве пользователя.

Сетевая вода ГВС должна соответствовать нормам «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

Примеси сырой воды. Методы водоподготовки для котельной.

Примеси, содержащиеся в воде, можно разделить на две группы: растворенные и нерастворенные (механические). Высокая мутность , наличие взвешенных и коллоидных частиц ведет к накоплению шлама и забиванию трубной системы котла и нарушению циркуляции. В зависимости от источника воды и количественных показателей нерастворенных загрязнений выбирается метод механической очистки, осветления. В самом простом случае это механический фильтр с рейтингом фильтрации 200-500 мкм, а при поверхностном водозаборе может потребоваться обработка коагулянтами, флокулянтами, с дальнейшим отстаиванием и осветлением.

К растворенным примесям, влияющим на работу котлового оборудования, в первую очередь относят соли жесткости . При использовании жесткой воды происходит образование накипи на поверхности, ухудшается теплоотдача, происходит перегрев труб со стороны нагрева, что может привести к их разрушению. В зависимости от типа котла предъявляются менее или более жесткие требования по содержанию солей кальция и магния в питательной и котловой воде. На основании требований к очистке, исходной жесткости воды и требуемой производительности выбирается способ умягчения. К основным способам можно отнести:
1.Умягчение на Na-катионитовой смоле;
2.Известкование;
3.Умягчение, снижение общего солесодержания на установках обратного осмоса;
4.Умягчение, снижение общего солесодержания последовательным пропусканием воды через Н-, ОН-ионообменные фильтры.

Наиболее распространённым методом умягчения для котельных небольшой мощности является метод ионного обмена на Na-катионитном фильтре. При протекании воды через слой загрузки ионы кальция и магния замещают ионы натрия в гранулах смолы. Таким образом, ионы жесткости извлекаются из воды, а для поддержания ионного баланса в эквивалентном соотношении выделяются ионы натрия, соли которого обладают высокой растворимостью. Подробнее об умягчении можно узнать в соответствующем разделе сайта. Для непрерывного умягчения используют установки типа Duplex (Дуплекс ) — два фильтра работают одновременно, но регенерируются поочерёдно; или типа Twin (Твин) – два фильтра работают по очереди, регенерация происходит в момент работы другого фильтра. Стоить отметить, что для регенерации Na-китионнообменных фильтров промышленного и коммерческого назначения экономически целесообразно использовать не таблетированную соль, а насыпью. Для возможности применения соли в насыпь необходимы солерастворяющие установки (солерастворители). Ознакомиться с ними можно также на нашем сайте, перейдя по ссылке.

Подготовка питательной воды методом обратного осмоса применяется, когда необходимо очень высокое качество воды и/или получаемого пара, а также когда необходимо решение нескольких задач, например, если помимо умягчения необходимо снизить щелочность воды, удалить хлориды или сульфаты . Установки обратного осмоса (УОО) всегда рассчитываются индивидуально для каждого случая, исходя из качества исходной воды. Очищенная на обратноосмотических мембранных элементах вода называется «пермеатом» и имеет пониженный водородный показатель рН. УОО работают на накопительные емкости, а до подачи исходной воды на установку обязательно необходима предподготовка. Подробнее об установках обратного осмоса можно узнать из соответствующего раздела сайта.

Для воды из скважины характерным является превышение содержания железа и марганца , которые также влияют на рабочий режим котлового оборудования. Выбор метода обезжелезивания определяется многими факторами – от производительности установки до сопутствующих примесей.

Для предотвращения кислородной коррозии необходимо удалить растворенный кислород из питательной воды. Различают несколько видов деаэрации, но наиболее часто применяется термический и химический способ. Химический (реагентный) – введение в воду вещества, связывающего растворенный кислород, чаще всего применяют сульфит, гидросульфит или тиосульфат натрия. При термической обработке питательная вода нагревается до температур, близких к температуре кипения, при этом растворимость газов в воде уменьшается и происходит их удаления. Аппараты, в которых производится термическая дегазация, называются «деаэраторы». Бывают деаэраторы атмосферного, повышенного давления и вакуумные. По способу нагрева деаэраторы делятся на струйные, барботажные и комбинированные. В деаэраторах, помимо кислорода, удаляется также растворенный в воде углекислый газ , который является причиной углекислотной коррозии. Для уменьшения содержания углекислого газа в подпиточной воде используют также подщелачивание.

Существует большое количество реагентов, предназначенных для ингибирования процессов солеотложения и коррозии. Традиционно применяют автоматически дозирующие станции для ввода реагента в предварительно подготовленную воду. В некоторых случаях реагенты совместимы и могут дозироваться из одной ёмкости рабочих растворов, в других – требуется наличие нескольких дозирующих станций. При использовании реагентной коррекционной обработки необходимо следить за приготовлением дозируемых растворов и постоянно контролировать концентрации дозируемых веществ в котловой воде.

Компания «АкваГруп» гарантирует индивидуальный подход к подбору и расчету установки ВПУ для каждого объекта.

Ссылка на основную публикацию
Adblock detector