Вихревой теплогенератор своими руками чертежи и схемы

Вихревой теплогенератор своими руками чертежи и схемы

Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.

Устройство и принцип работы

Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.

Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.

В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:

  • Пассивные тангенциальные системы;
  • Пассивные аксиальные системы;
  • Активные устройства.

Теперь рассмотрим каждую из категорий более детально.

Пассивные тангенциальные ВТГ

Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.

Рисунок 1: принципиальная схема пассивного тангенциального генератора

При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.

Пассивные аксиальные теплогенераторы

Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.

Рис. 2: принципиальная схема пассивного аксиального теплогенератора

Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.

Активные теплогенераторы

Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.

Рис. 3: принципиальная схема активного теплогенератора

При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.

Назначение

На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:

  • Отопления помещений, как в бытовых, так и в производственных зонах;
  • Нагревания жидкости для осуществления технологических операций;
  • В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
  • Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
  • Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
  • Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
  • Парогенерации.

С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.

Преимущества и недостатки

В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:

  • Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
  • Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
  • Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
  • Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
  • Нет необходимости организации системы охлаждения;
  • Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
  • Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
  • Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;

Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:

  • Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
  • Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
  • Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
  • Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Читайте также:  Горький перец с помидорами на зиму

Критерии выбора

При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:

  • Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
  • Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
  • Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
  • Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
  • Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
  • Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.

Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:

Таблица: характеристики некоторых моделей вихревых генераторов

Вихревой теплогенератор Потапова, или же сокращенно ВТП, был разработан специально для того, чтобы получать тепловую энергию с помощью всего лишь электрического двигателя и насоса. Такое устройство используется преимущественно в качестве экономного источника тепла.

Сегодня мы рассмотрим особенности конструкции этого устройства, а также как изготовить вихревой теплогенератор своими руками.

Принцип работы

Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.

Электроэнергия, требуемая для работы генератора, тратится на три вещи:

  • На образование звуковых колебаний.
  • На то, чтобы преодолеть силу трения в устройстве.
  • На нагревание жидкости.

При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.

Для чего используется?

Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.

Получается, что эффективность вихревого генератора – 1.2-1.5.

Необходимые инструменты

Что же, пора приступать к самостоятельному изготовлению генератора. Давайте посмотрим, что нам потребуется:

  • Шлифовальная машинка угловая, или турбинка;
  • Железный уголок;
  • Сварка;
  • Болты, гайки;
  • Электрическая дрель;
  • Ключи 12-13;
  • Сверла к дрели;
  • Краска, кисточка и грунтовка.

Технология изготовления. Двигатель

Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.

Читайте так же про установку водяного насоса для отопления — тут

Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.

  1. Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
  2. Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
  3. Красим станину, ждем, пока высохнет.
  4. Сверлим отверстия для крепежа, закрепляем электродвигатель.

Устанавливаем насос

Далее мы должны выбрать «правильный» водяной насос. Ассортимент этих инструментов сегодня настолько широк, что можно найти себе модель любой силы и габаритов. Нам же нужно обращать внимание лишь на две вещи:

  • Сможет ли двигатель раскрутить этот насос;
  • Является ли он (насос) центробежным.

Далее насос устанавливается все в том же каркасе, при необходимости крепятся дополнительные крепежные элементы.

У вихревого генератора корпус представляет собой цилиндр, закрытый с обеих сторон. По боками должны находиться сквозные отверстия, посредством которых устройство будет подсоединяться к отопительной системе. Но главная особенность конструкции – внутри корпуса: сразу возле входного отверстия размещен жиклер. Отверстие жиклера должно подбираться чисто индивидуально.

Обратите внимание! Желательно при этом, чтобы отверстие жиклера было вдвое меньше, чем 1/4 общего диаметра цилиндра. Если отверстие будет меньшим, то вода не сможет проходить сквозь него в необходимом количестве и насос начнет греться. Более того, внутренние элементы начнут разрушаться кавитацией.

Для изготовления корпуса нам потребуются следующие инструменты:

  1. Железная труба с толстыми стенками диаметром около 10 см;
  2. Муфты для соединения;
  3. Сварка;
  4. Несколько электродов;
  5. Турбинка;
  6. Пара патрубков, в которых проделана резьба;
  7. Электрическая дрель;
  8. Сверла;
  9. Ключ разводной.

Теперь – непосредственно к процессу изготовления.

  1. Для начала отрезаем кусок трубы длиной порядка 50-60 см и делаем на ее поверхности внешнюю проточку примерно на пол толщины, 2-2.5 см. нарезаем резьбу.
  2. Берем еще два куска этой же трубы, длиной по 5 см каждый, и делаем из них пару колец.
  3. Затем берем металлический лист с такой же толщиной, какая и у трубы, вырезаем из нее своеобразные крышки, привариваем их там, где резьба не делалась.
  4. По центру крышек делаем два отверстия – одно из них по окружности патрубка, второе – по окружности жиклера. Внутри крышки рядом с жиклером просверливаем фаску таким образом, чтобы получилась форсунка.
  5. Подключаем генератор к отопительной системе. патрубок возле форсунки подсоединяем к насосу, но только к тому отверстию, откуда под напором поступает вода. Второй патрубок соединяем с входом в отопительную систему, выход же необходимо подсоединить к входу насоса.
Читайте также:  Интерьер маленькой комнаты в деревянном доме

Насос будет создавать давление, которое, воздействуя на воду, заставит ее проходить через форсунку нашей конструкции. В специальной камере вода будет перегреваться ввиду активного перемешивания, после чего подается непосредственно в отопительный контур. Дабы можно было регулировать температуру, вихревой теплогенератор своими руками должен оснащаться специальным запирающим устройством, располагающимся рядом с патрубком. Если несколько прикрыть запор, то конструкция будет дольше перегонять воду по камере, следовательно, из-за этого температура поднимется. Таким образом и работает такого рода обогреватель.

Про другие способы альтернативного отопления читайте тут

Повышаем производительность

Насос теряет тепловую энергию, что является главным недостатком вихревого генератора (по крайней мере, в описанном своем варианте). Поэтому насос лучше окунуть в специальную водяную рубашку, дабы исходящее от него тепло также приносило пользу.

Диаметр этой рубашки должен быть несколько больше, чем у насоса. Можем использовать для этого по традиции обрезок трубы, а можно из листовой стали сделать параллелепипед. Его габариты должны быть такими, чтобы все элементы генератора свободно в него помещались, а толщина – чтобы выдерживал рабочее давление системы.

Помимо того, снизить теплопотери можно установкой специального жестяного кожуха вокруг устройства. Изолятором может стать любой такого рода материал, который способен выдерживать рабочую температуру.

  1. Собираем следующую конструкцию: теплогенератор, насос и соединяющий патрубок.
  2. Измеряем, каковы их габариты, и подбираем трубу нужного диаметра – так, чтобы все детали легко в ней поместились.
  3. Изготавливаем крышки для обеих сторон.
  4. Далее заботимся о том, чтобы детали внутри трубы были жестко закреплены, а также о том, чтоб насос сумел прокачивать сквозь себя теплоноситель.
  5. Просверливаем выходное отверстие, крепим на него патрубок.

Обратите внимание! Необходимо поместить насос максимально близко к данному отверстию!

На втором конце трубы мы привариваем фланец, посредством которого будет закреплена крышка на прокладке-уплотнителе. Можно оборудовать внутри корпуса каркас, чтобы было проще устанавливать все элементы. Собираем устройство, проверяем, насколько прочны крепления, проверяем герметичность, вставляем в корпус и закрываем.

Затем подключаем вихревой теплогенератор ко всем потребителям, проверяем его еще раз на предмет герметичности. Если ничего не течет, то можно активировать насос. При открытии/закрытии крана на входе регулируем температуру.

Возможно вас так же заинтересует статья о том как сделать солнечный коллектор своими руками

Утепляем ВТП

Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.

  1. Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
  2. Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
  3. Обматываем устройство термоизоляционным материалом.
  4. Помещаем генератор в кожух и плотно закрываем обе крышки.

Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.

Гаситель вихрей

Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.

Посмотрим, что нам потребуется для работы.

  • Сварка.
  • Турбинка.
  • Лист стали.
  • Труба с толстыми стенками.

Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.

  1. Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
  2. Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
  3. Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.

Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?

И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.

Отопление дома, гаража, офиса, торговых площадей – вопрос, решать который надо сразу после того, как помещение построено. И не важно, какое время года на улице. Зима всё равно придёт. Так что побеспокоиться о том, чтобы внутри было тепло необходимо заранее. Тем, кто покупает квартиру в многоэтажном доме, волноваться не о чем – строители уже всё сделали. А вот тем, кто строит свой дом, оборудует гараж или отдельно стоящее небольшое здание, придётся выбирать, какую систему отопления устанавливать. И одним из решений будет вихревой теплогенератор.

История изобретения

Сепарация воздуха, иначе говоря, разделение его на холодную и горячую фракции в вихревой струе – явление, которое и легло в основу вихревого теплогенератора, было открыто около ста лет назад. И как это часто бывает, лет 50 никто не мог придумать, как его использовать. Так называемую вихревую трубу модернизировали самыми разными способами и пытались пристроить практически во все виды человеческой деятельности. Однако везде она уступала и по цене и по КПД уже имеющимся приборам. Пока русский учёный Меркулов не придумал запустить внутрь воду, не установил, что на выходе температура повышается в несколько раз и не назвал этот процесс кавитацией. Цена прибора уменьшилась не намного, а вот коэффициент полезного действия стал практически стопроцентным.

Читайте также:  Вилка штепсельная евро 16а

Принцип действия

Так что же такое эта загадочная и доступная кавитация? А ведь всё довольно просто. Во время прохождения через вихрь, в воде образуется множество пузырьков, которые в свою очередь лопаются, высвобождая некое количество энергии. Эта энергия и нагревает воду. Количество пузырьков подсчёту не поддаётся, а вот температуру воды вихревой кавитационный теплогенератор может повысить до 200 градусов. Не воспользоваться этим было бы глупо.

Два основных вида

Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

  • Шумит такая установка очень сильно.
  • Изношенность деталей повышенная.
  • Требует частой замены уплотнителей и сальников.
  • Слишком дорогое обслуживание.

Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

  • Прибор может работать при низком давлении.
  • Разница температур на холодном и горячих концах довольно велика.
  • Абсолютно безопасен, в каком бы месте не использовался.
  • Быстрый нагрев.
  • КПД 90 % и выше.
  • Возможность использования, как для обогрева, так и для охлаждения.

Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

Как собрать теплогенератор

При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

  • Сварочный аппарат.
  • Шлифмашинка.
  • Электродрель.
  • Набор гаечных ключей.
  • Набор свёрл.
  • Металлический уголок.
  • Болты и гайки.
  • Толстая металлическая труба.
  • Два патрубка с резьбой.
  • Соединительные муфты.
  • Электродвигатель.
  • Центробежный насос.
  • Жиклёр.

Вот теперь можно приступать непосредственно к работе.

Устанавливаем двигатель

Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

Подсоединяем насос

Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

  • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
  • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
  • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
  • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
  • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
  • Вход системы отопления подсоединяется ко второму патрубку.
  • К входу насоса присоединяется выход из системы отопления.

Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

Усовершенствуем теплогенератор

Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

Вихрегаситель

Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

  • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
  • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
  • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.

Ссылка на основную публикацию
Adblock detector