Вах идеального источника тока

Вах идеального источника тока

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Источник электродвижущей силы – источник электромагнитной энергии, характеризующихся электродвижущей силой и внутренним электрическим сопротивлением.

Часть схемы, обведенная на рис. 12 пунктиром, является источником ЭДС.

Направление действия ЭДС указывается от отрицательного зажима к положительному. Если к зажимам источника ЭДС присоединить приемник (нагрузить источник), то в цепи возникает ток. При этом напряжение (разность потенциалов) на зажимах 1 и 2 уже не будет равно ЭДС вследствие падения напряжения Uвн внутри источника энергии, т.е. на его внутреннем сопротивлении rвн:

т.е.

. (1.5)

Рис. 12 Источник ЭДС и его ВАХ

Зависимость напряжения источника от отдаваемого им тока называется внешней характеристикой источника или вольтамперной характеристикой элемента (рис.12).

Если и напряжение на зажимах источника, ЭДС убывает по линейному закону.

Кстати, направление действия напряжения принято обозначать от точки с большим потенциалом к точке с меньшим потенциалом.

Источник ЭДС, внутреннее сопротивление которого равно нулю называют идеальным источником ЭДС. Вольтамперная характеристика идеального источника ЭДС проходит параллельно оси абсцисс.

Представленная на рис. 12 схема называется схемой замещения источника ЭДС.

Источник тока.

Источник тока – источник электромагнитной энергии, характеризующийся током в нем и внутренней проводимостью. На рис. 13 показана схема замещения источника тока.

Рис 13 Источник тока и его ВАХ

Напряжение на зажимах источника тока с учетом того, что , а , равно:

(1.2)

При неизменных параметрах источника тока ( , ) его ВАХ выражается прямой линией (рис. 13).

Читайте также:  Как закрепить встраиваемый духовой шкаф

В режиме короткого замыкания (R=0) весь генерируемый ток проходит через цепь нагрузки, т.е.

В режиме холостого хода (R=¥) ток источника проходит через . При этом напряжение холостого хода равно:

.

Так как — мала, то , что является опасным, аварийным.

Чем меньше , тем больше , тем больше угол наклона ВАХ. Когда =0, ВАХ – вертикальная прямая. Такой источник тока, внутренняя проводимость которого равна нулю, называется идеальным источником тока.

Для идеального источника тока ток нагрузки постоянен, а напряжение на нагрузке равно и может быть сколь угодно большим. В связи с этим, идеальный источник тока является источником бесконечно большой мощности.

Источник ЭДС целесообразно заменять эквивалентным источником тока в том случае, если сопротивление нагрузки в цепи (усилитель электронный).

1.6. Основные режимы работы электрической цепи

При рассмотрении основных режимов работыэлектрической цепи используем её ВАХ.

Источники электрической энергии постоянного тока характеризуются э.д.с. Е и внутренним сопротивлением rвн, а приемники – величиной их сопротивления. Для получения ВАХ электрической цепи воспользуемся законом Ома для полной цепи, изображенной на рис. 14

, откуда .

Данное выражение определяет зависимость напряжением на зажимах источника э.д.с. и током нагрузки. При постоянных параметрах Е и rвн вольтамперная характеристика представляет собой прямую линию проходящую через точки Е и Iкз (рис. 14.). Такой источник э.д.с. называется линейным.

Рис.14 Источник ЭДС и его ВАХ

Рассмотрим различные режимы работы источника электрической энергии.

Режим холостого хода (х.х.) – такой режим, при котором потребитель отключен от источника. Поэтому внешнее сопротивление цепи бесконечно велико ( ), а величина тока в цепи равна нулю (I=0), падение напряжения внутри источника так же будет равно нулю ( ). Напряжение на зажимах источника U будет равно э.д.с. Е.

Вывод: чтобы измерить э.д.с. источника, необходимо провести режим холостого хода (оборвать внешнюю цепь), тогда вольтметр, подключенный к зажимам источника покажет э.д.с. источника.

Режим короткого замыкания (к.з.) – такой режим, при котором зажимы источника соединены проводником с весьма малым сопротивлением, величиной которого можно пренебречь. При этом сопротивление всей цепи равно внутреннему сопротивлению источника, а ток в цепи будет наибольшим .

Напряжение на зажимах источника при коротком замыкании

.

Вывод: в режиме короткого замыкания ток в цепи наибольший, а напряжение на зажимах равно нулю.

Режим короткого замыкания опасен для большинства источников, так как при этом происходит перегрев источника, что может вывести его из строя.

Нагрузочный режим

Зависимость напряжения на зажимах источника от тока нагрузки выражается формулой , где Е и rвн – величины постоянные.

Графически (рис. 12) эта зависимость представляет собой наклонную прямую линию. Отрезок ОЕ, который отсекает данная прямая на вертикальной оси, соответствует точке I=0 (х.х.). При этом, как было показано выше Uхх.

По мере увеличения тока падение напряжения внутри источника (Irвн) увеличивается, а напряжение на зажимах уменьшается. В точке Iкз напряжение на зажимах источника равно нулю (U=0). Эта точка соответствует режиму короткого замыкания.

Пользуясь данным графиком, можно для любого значения тока нагрузки определить соответствующее значение напряжения на зажимах источника.

Источники электрической энергии являются необходимым элементом любой электрической цепи.

Их разделяют на идеальные и реальные источники. В свою очередь, идеальные источники делятся на источники электродвижущей силы (ЭДС) и источники тока .

Направление стрелки в условном обозначении источника ЭДС указывает направление действия ЭДС, поэтому направление падения напряжения на выходных зажимах источника всегда противоположно.

Так как на ВАХ электрическое сопротивление соответствует котангенсу угла наклона характеристики, то сопротивление источника ЭДС равно нулю, а проводимость, соответственно, бесконечности.

Отсюда, сопротивление источника тока равно бесконечности, а проводимость — нулю.

Направление стрелки в условном обозначении источника тока указывает направление протекания тока.

Источники ЭДС и источники тока часто рассматриваются как некие абстракции, не имеющие реального физического воплощения. Однако, это справедливо только, если считать , что их ВАХ не имеют ограничения. В этом случае ток через источник ЭДС или падение напряжения на источнике тока могут достигать бесконечно больших значений. При этом мощность источника ( P = U Ч I ) должна быть бесконечно большой, что исключает возможность технической реализации.

Читайте также:  Газовый инвертор для отопления

Если же ток и/или напряжение источника ограничено, то свойствами идеального источника обладают, например, стабилизированные источники питания , типичная ВАХ которых приведена на рис. 1

Выходное напряжение такого устройства U вых постоянно до тех пор, пока ток нагрузки не достигнет максимально допустимого значения I max , после чего источник питания из режима стабилизации напряжения переходит в режим стабилизации тока. В пределах обоих режимов источник питания обладает свойствами соответственно идеального источника ЭДС и источника тока.

Идеальные источники ЭДС и тока используются также для моделирования некоторых электромагнитных процессов и нелинейных элементов электрических цепей, таких, например, как диод.

Реальные источники электрической энергии (ИЭ) имеют ВАХ, показанную на рис. 2.

ВАХ реальных источников пересекает обе оси координат и эти точки пересечения соответствуют нулевому току через источник и нулевому падению напряжения. Режим с нулевыи током и ненулевым падением напряжения называется холостым ходом, а режим с нулевым падением напряжения и ненулевым током на выходе — коротким замыканием .

Уравнение ВАХ ИЭ представляет собой уравнение прямой линии в координатах U — I . Его можно получить из уравнения прямой линии, проходящей через начало координат I = — Ug = — U / r либо из обратной функции U = — Ir , где r — коэффициент соответствующий котангенсу угла наклона к оси U и имеющий размерность сопротивления, а g = 1/ r — тангенс угла наклона с размерностью проводиомсти. Для получения ВАХ ИЭ можно сместить линию I = — Ug на величину тока короткого замыкания

I = — Ug + I кз = I кз — Ug = J — Ug

или обратную функцию U = — Ir сместить на величину напряжения холостого хода.

U = — Ir + U хх = U хх — Ir = E — Ir

В выражениях (1) и (2) ток короткого замыкания I кз и напряжение холостого хода U хх являются константами, поэтому их можно заменить равным по значению током J и ЭДС E соответствующих идеальных источников, т.к. параметры идеальных источников также являются константами . Тогда выражениям (1) и (2) можно поставить в соответствие электрические схемы рис. 3 а) и б).

Выражения (1) и (2) и соответствующие им схемы рис. 3 описывают один и тот же элемент электрической цепи, имеющий ВАХ, представленную на рис. 2. Поэтому оба варианта совершенно эквивалентны и могут применяться в зависимости от целей и удобства конкретного представления.

В ИЭ сопротивление r и проводимость g называются соответственно внутренним сопротивлением и внутренней проводимостью источника.

Из выражений (1) и (2) следует, что ток I на выходе ИЭ отличается от значения тока внутреннего источника J на величину тока Ug , ответвляющегося внутри ИЭ через проводимость g . Аналогично, напряжение U на выходе источника отличается от значения ЭДС внутреннего источника на величину падения напряжения Ir на внутреннем сопротивлении r . Поэтому, чем меньше внутреннее сопротивление ИЭ r, тем ближе его свойства к свойствам идеального источника .

При r ® 0 ИЭ становится источником ЭДС, однако, в эквивалентной схеме с источником тока g = 1/ r ® Ґ , и J = E / r ® Ґ . Отсюда следует, что при преобразовании источника ЭДС с конечными значениями параметров мы получим ИЭ с бесконечным значением тока. Идентичные рассуждения можно привести и для преобразования ИЭ с источником тока при g ® 0.

Таким образом, любой реальный источник электрической энергии, представленный, например, схемой а) рис. 3 можно преобразовать и представить эквивалентной схемой рис. 3 б) и наоборот. В то же время, идеальные источники (источники ЭДС и тока) в принципе не могут быть преобразованы один в другой.

Параметры ИЭ в схемах а) и б) связаны между собой следующими соотношениями:

E = Jg ; r = 1/ g ; J = E / r ; g = 1/ r

На практике параметры ИЭ определяют по координатам двух точек ВАХ, т.е. по значениям тока и падения напряжения на выходе источника в двух произвольных режимах (при любых двух значениях сопротивления нагрузки, подключенного к выходным зажимам ИЭ).

Пусть измерены значения токов и падений напряжения в нагрузке в режиме 1 и 2 рис 2. Тогда по этим параметрам можно определить параметры схем рис. 3 следующим образом:

для схемы а) или

для схемы б) .

Выражения (3) и (4) позволяют определить искомые параметры источников в общем случае, однако задачу можно существенно упростить, если источник допускает режимы холостого хода и/или короткого замыкания. Тогда достаточно измерить:

  1. напряжение холостого хода U хх , а также ток I и напряжение на выходе U , при любой нагрузке;
  2. ток короткого замыкания I кз , а также ток I и напряжение на выходе U , при любой нагрузке;
  3. напряжение холостого хода U хх и ток короткого замыкания I кз .
Читайте также:  Воронение стволов охотничьего ружья клевером

Для этих трех случаев выражения (3) и(4) преобразуются с учетом того, что I хх =0, и U кз =0, к виду представленному в таблице 1:

Исходные параметры

U хх , U , I

I кз , U , I

U хх , I кз

Рис. 3 а)

J = U хх I /( U хх — U )

g = I /( U хх — U )

g = ( I кз — I )/ U

g = I кз / U хх

Рис. 3 б)

r = ( U хх — U )/ I

E = I кз U /( I кз — I )

g = ( I кз — I )/ U

r = U хх / I кз

На практике параметры ИЭ можно определить также с помощью переменной нагрузки без одновременного измерения тока и напряжения. Для этого достаточно, например, измерить напряжение холостого хода U хх , а затем подключить и изменять нагрузку до тех пор, пока падение напряжения на ней не станет равным U хх /2. Можно также измерить ток короткого замыкания I кз , а затем подключить и изменять нагрузку до тех пор, пока ток в ней не станет равным I кз /2. В обоих случаях внутреннее сопротивление источника r будет равно сопротивлению нагрузки R н .

Рассмотрим подробнее этот способ для случая ИЭ с источником ЭДС показанного на рис. 4. При подключении нагрузки R н напряжение на выходе источника уменьшается в два раза, т.е. U хх = E =2 U н . В то же время, U н = E — Ir . Отсюда внутреннее сопротивление

r = ( E — U н )/ I = (2 U н — U н )/ I = U н / I = R н .

Аналогично для схемы ИЭ с источником тока после подключения нагрузки ток во внешней цепи уменьшится вдвое, т.е. I кз = J =2 I н и I н = J — Ug . Тогда

g = ( J — I н )/ U = (2 I н — I н )/ U = I н / U = G н

Таким образом, если в нагрузке протекает ток равный половине значения тока короткого замыкания источника или падение напряжения на ней составляет половину от напряжения холостого хода, то в таком режиме сопротивление нагрузки и ее проводимость в точности равны внутреннему сопротивлению и проводимости ИЭ.

Реальные источники электрической энергии обладают внутренним сопротивлением, соответствующим потерям в самом источнике и теоретически не могут быть представленными без него. Однако на практике часто бывает целесообразным не учитывать внутреннее сопротивление. Оценим возникающую при этом погрешность.

Пусть источник имеет вольтамперную характеристику, представленную на рис. 5, и пусть к нему поочередно подключаются две различные нагрузки, соответствующие работе источника в точках A и B . Причем нагрузки выбраны таким образом, что I B = I кз — I A = D I и U A = U хх — U B = D U , т.е. отклонение тока в точке A от тока короткого замыкания равно току в точке B , а отклонение напряжения в точке B от напряжения холостого хода равно напряжению в точке A .

Выразим отклонения тока и напряжения в относительных единицах, приняв за базовые значения напряжение холостого хода U хх и ток короткого замыкания источника I кз —

D I = d I I кз ; D U = d U U хх .

Тогда напряжение и ток в нагрузке в точках A и B будут

U A = d U U хх ; I A = I кз — d I I кз = I кз (1 — d I ) ;

U B = U хх — d U U хх = U хх (1 — d U ); I B = d I I кз .

Но из подобия прямоугольных треугольников

,

где r — внутреннее сопротивление источника. В то же время из (5)

,

следовательно d U = d I = d и из выражений (6)

.

(8)

В выражении (7) m — отношение внутреннего сопротивления источника к сопротивлению нагрузки, а d — относительное отклонение тока нагрузки от тока короткого замыкания источника. В выражении (8) l — отношение сопротивления нагрузки к внутреннему сопротивлению источника, а d — относительное отклонение напряжения нагрузки от напряжения холостого хода источника.

Таким образом, замена реального источника на источник тока или источник ЭДС приведет к появлению положительной погрешности d , величина которой зависит от отношения величин внутреннего сопротивления источника и сопротивления нагрузки ( l = 1/ m ). При замене источником тока для оценки погрешности нужно брать отношение m , а при замене источником ЭДС — отношение l .

Зависимости d ( l ) и d ( m ) совершенно идентичны (рис. 6) и из них следует, что при R н > 20 r исключение внутреннего сопротивления источника и представление его источником ЭДС приведет к погрешности менее 5% . Такую же погрешность создаст замена реального источника на источник тока, если 20 R н r .

Изложенные выше сведения по источникам электрической энергии кратко можно свести в таблицу

Ссылка на основную публикацию
Adblock detector