В каких случаях необходимо защитное заземление электроустановок

В каких случаях необходимо защитное заземление электроустановок

А) При напряжении 380в и выше- во всех случаях и при любом токе.

Б) При напряжении выше 50в переменного тока и 110в постоянного тока- в помещениях с повышенной опасностью, особо опасных и в наружных электроустановках.

В) При всех напряжениях переменного и постоянного тока во взрывоопасных помещениях.

10.2 Какие работы может производить обучаемый?

Обучаемый может производить оперативные переключения, осмотры или иные работы, но только с разрешения и под наблюдением обучающего.

10.3 Как классифицируются помещения по степени опасности поражения током?

1.Помещение без повышенной опасности-это помещение, в котором отсутствуют условия, создающие повышенную опасность и особую опасность.

2.Помещение с повышенной опасностью характеризуется наличием одного из следующих факторов:

А) сырости(относительная влажность-75%) или пыли, проводящей ток;

Б) токопроводящих полов (металлических, земляных, железобетонных и т.п.);

В) температура выше 30 град. по Цельсию длительное время;

Г) возможности одновременного прикосновения к конструкциям, имеющим соединение с землей, и к корпусу электрооборудования.

3. Особо опасное помещение характеризуется наличием одного из следующих факторов:

А) особой сырости(относительная влажность-100%),либо наличие влаги на потолке, стенах и предметах;

Б) химически активной среды, где постоянно или длительно содержатся пары, разрушающе действующие на изоляцию электрооборудования;

В) Одновременное присутствие двух или более факторов повышенной опасности.

Все эти помещения могут быть пожароопасными, если в них применяются или хранятся горючие вещества, либо взрывоопасными, если в них образовываются парогазопылевоздушные смеси.

Билет 11.

11.1 Какие части электрических установок подлежат заземлению?

А) Корпуса электрических машин, трансформаторов, аппаратов, светильников и т.п.;

Б) Приводы электрических аппаратов;

В) Вторичные обмотки измерительных трансформаторов;

Г) Каркасы распредщитов, щитов управления, щитков, шкафов;

Д) Металлические конструкции распределительных устройств, металлические кабельные конструкции, металлические корпуса кабельных муфт, металлические оболочки и брони кабелей, проводов, стальные трубы электропроводки и др.металлические конструкции, связанные с установкой электрооборудования;

Е) Металлические корпуса передвижных и переносных электроприемников.

11.2 Как разделяются защитные средства?

Все изолирующие защитные средства делятся на:

А) Основные защитные средства;

Б) Дополнительные защитные средства.

Основными защитными средствами называются такие, изоляция которых надежно выдерживает рабочее напряжение электроустановок, и при помощи которых допускается касаться токоведущих частей, находящихся под напряжением.

Дополнительными защитными средствами называются такие, которые сами по себе (при данном напряжении) не могут обеспечить защиту от поражения током. Они являются дополнительными к основным средствам защиты, а также служат для защиты от напряжения прикосновения, шагового напряжения, воздействия электрической дуги и продуктов ее горения.

В установках до 1000в основными являются: диэлектрические перчатки, инструмент с изолированными ручками, указатели напряжения, изолирующие штанги и клещи. Дополнительными: диэлектрические калоши, резиновые коврики, изолирующие подставки, переносные заземления, оградительные устройства, плакаты и знаки безопасности.

11.3 Оказание первой помощи при поражении электрическим током.

Первая помощь при поражении током состоит из двух этапов:

А) Освобождение пострадавшего от действия электрического тока.

В первую очередь надо быстро отключить электроустановку или перерубить провод топором с деревянной ручкой. При этом следует предупредить падение пострадавшего(если это произошло на высоте) и исчезновение освещения. Если невозможно отключить установку или перерубить провод, то отделить пострадавшего от токоведущих частей следует, оттаскивая его за одежду, предварительно набросив себе на руку шарф, фуражку и т.п., или отбросить провод доской, палкой и т.п. от пострадавшего.

Б) Оказание доврачебной медпомощи.

Условием успеха являются: быстрота действия, находчивость, умение оказать помощь. Во всех случаях поражения током надо, не прерывая оказания помощи, вызвать врача. После освобождения от электрического тока надо: уложить пострадавшего на спину, проверить наличие дыхания и пульса, выявить состояние зрачка(широкий зрачок указывает на ухудшение кровообращения).Если пострадавший находится в сознании, его надо уложить и, до прибытия врача, обеспечить покой. Если находится в бессознательном состоянии, но сохраняет устойчивое дыхание и пульс, его следует уложить, расстегнуть одежду, создав приток свежего воздуха, давать нюхать нашатырный спирт и обеспечить покой до прихода врача. Если дыхание и пульс отсутствуют, то пострадавшему надо немедленно делать искусственное дыхание и принудительное кровообращение, путем сжатия сердца посредством ритмических надавливаний на переднюю стенку грудной клетки(наружный массаж сердца).

Искусственное дыхание производится путем ритмичных вдуваний воздуха из своего рта в рот или нос пострадавшего. Искусственное дыхание и массаж сердца должны производиться поочередно, в определенном порядке.

Билет 12.

12.1 Как обеспечивается контакт(соединение) в заземлениях.

Присоединение заземляющих проводников к заземлителям и заземляемым конструкциям должно быть выполнено сваркой, а к корпусам аппаратов, машин и т.п.- сваркой или надежным болтовым соединением. Концы заземляющих гибких проводников, применяемых для присоединения к корпусам аппаратов, машин, и т.п., должны иметь приваренные наконечники (либо опресованные).

12.2 Организационные мероприятия, обеспечивающие безопасность работ.

Организационными мероприятиями, обеспечивающими безопасность работ в электроустановках, являются:

1.оформление работ нарядом, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;

2.допуск к работе;

3.надзор во время работы;

4.оформление перерыва в работе, перевода на другое место, окончание работы.

12.3 Кто является ответственным за безопасность работ?

Ответственным за безопасность работ являются:

1.лицо, выдающее наряд, отдающее распоряжение;

3.ответственный руководитель работ;

Билет 13.

Какие части электроустановок не требуют заземления?

А) Арматура подвесных и штыревых изоляторов, кронштейны и осветительная арматура;

Б) Оборудование, установленное на заземленных металлических конструкциях, при этом на опорных поверхностях должны быть предусмотрены зачищенные и незакрашенные места для обеспечения электрического контакта;

В) Корпуса электроизмерительных приборов, реле, установленных на щитах, шкафах, а также стенах камер распред. устройств;

Г) Электроприемники с двойной изоляцией;

Д) Рельсовые пути, выходящие за территорию подстанций, промышленных предприятий и т.п.

Е) Съемные или открывающиеся части на металлических заземленных каркасах, камерах распределительных устройств, ограждений шкафов и т.п.

Допускается, вместо заземления отдельных электродвигателей и аппаратов на станках, непосредственно заземлять станины станков, при условии обеспечения надежного контакта между корпусами электрооборудования и станиной.

В помещениях без повышенной опасности заземление корпусов переносных приборов не обязательно, а также заземление стационарных электроустановок до 380в в сухих производственных помещениях с плохо проводящими полами(деревянными, асфальтовыми и пр.)или в конторских и т.п. отапливаемых помещениях.

Система TN-S.

Система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников. Нулевой защитный(PE) и нулевой рабочий(N) проводники разделены на всем ее протяжении.

13.3 За что отвечает лицо, выдающее наряд, отдающее распоряжение?

Читайте также:  Как заделать межпанельные швы внутри квартиры

Лицо, выдающее наряд, отдающее распоряжение, устанавливает необходимость и объем работы, отвечает за безопасность ее выполнения, достаточность квалификации лиц, исполняющих обязанности: допускающего, ответственного производителя работ, производителя работ, наблюдающего, членов бригады.

Право выдачи нарядов предоставляется лицам электротехнического персонала предприятия, уполномоченных на выдачу нарядов распоряжением главного энергетика предприятия. Указанные лица должны иметь квалификационную группу не ниже 5-ой( в установках до 1000в- не ниже 4-ой).

Право давать распоряжение на производство работ, перечень которых определен главным энергетиком, предоставляется также лицам оперативного персонала с квалификационной группой не ниже 4-ой.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т.п.).

Защитное заземление предназначено для устранения опасности поражения электрическим током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Область применения защитного заземления – электроустановки по напряжением до 1000 В в сетях с изолированной централью и выше 1000В в сетях с любым режимом нейтрали источника тока (как с изолированной, так и с глухозаземленной).

В соответствии с требованиями ГОСТ 12.1.030-81 [1] защитное заземление электроустановки следует выполнять:

при номинальном напряжении 380В и выше переменного тока и 440В и выше постоянного тока во всех случаях;

при номинальных напряжениях от 42В до 380В переменного и от 110В до 440В постоянного тока при работах в условиях с повышенной опасностью, особо опасных и наружных установках.

Примечание: Характеристики этих условий приведены в обязательном приложении к ГОСТ 12.1.013-78 [2].

Защитному заземлению подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок и т.д.

Принцип действия защитного заземления в электроустановках напряжением до 1000В:

снижение напряжения прикосновения на заземленном корпусе при замыкание на него питающего напряжения.

Это достигается за счет малого сопротивления заземляющего устройства (Ом). Ток течет по пути наименьшего сопротивления, а т.к. сопротивление человека (кОм), то он пойдет в заземлитель или его эквивалент.

Принципиальная схема защитного заземления приведена на рис.:

(а) — трехфазной сети; (б) — двухпроводных сетей переменного и (в) — постоянного тока.

Примечание: предельно допустимые значения напряжений прикосновения и токов через тело человека с учетом длительности воздействия приведены в ГОСТ 12.1.038-82 [3].

Заземление осуществляется с помощью специальных устройств – заземлителей — это совокупность заземлителя – металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 20.4).

Контурное заземляющее устройство (рис. 20.5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее

Заземлители бывают одиночные и групповые, исскуственные и естественные.

Груповой заземлитель состоит из вертикальных стержней и соединяющей их горизонтальной полосы.

В качестве естественных заземлителей используют:

— проложенный в земле водопровод;

— обсадные трубы скважен (металлические);

— свинцовые оболочки кабелей, проложенных в земле;

— другие металлоконструкции, расположенные в грунте.

Общее сопротивление заземляющего устройства состоит из сопротивления естественных и искусственных заземлителей:

где – требуемое (допустимое) значение сопротивления заземляющего устройства.

Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать 4 Ом

Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током. С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры. В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила заземления электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.

Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.

Читайте также:  Изображение гор по фен шуй

Естественные заземлители

Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:

  • металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
  • металлические кожуха кабелей, прокладываемых непосредственно в грунте;
  • обычные металлические трубы (за исключением газовых и нефтепроводов);
  • рельсы железнодорожных путей.

Естественные заземлители

Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.

Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.

Важность сопротивления стеканию току

Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.

Ток замыкания на землю будет протекать с поврежденной фазы на корпус электроустановки и через заземляющее устройство в землю

Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:

  • для частных домов с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
  • для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
  • для источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

Чтобы достигнуть нормируемых ПУЭ значений сопротивления, потребуется принять специальные меры. Обычно они сводятся к следующим типовым процедурам:

  1. увеличение площади соприкосновения составляющих устройств заземления с грунтом;
  2. повышение качества контактов в местах сочленения отдельных элементов и медных соединительных шин;
  3. улучшение проводимости самой почвы (за счет постоянного увлажнения или добавления соляного раствора, например).

Теми же требованиями предписывается периодически (не реже одного раза в 6 лет) проверять сопротивление заземляющего контура на соответствие его величины утвержденным нормам.

Работа заземления при нарушении защитной изоляции токоведущих частей

Самая распространенная неисправность, встречающаяся при эксплуатации электрооборудования – замыкание фазы на металлический корпус из-за разрушения защитной изоляции.

Дополнительная информация: В современных бытовых приборах, оснащенных импульсными источниками питания с вилкой евро стандарта, опасный потенциал может постоянно присутствовать на металлическом корпусе.

В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:

  1. Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
  2. В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
  3. При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
  4. И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.

О первом случае, связанном с отсутствием специальных защитных средств, нечего и говорить, а вот второй вариант не совсем безопасен. Это объясняется тем, что при большом сопротивлении переходов и значительных номиналах предохранителей остаточный потенциал на корпусе прибора очень опасен для работающего человека. Так, при сопротивлении заземляющей конструкции в 4 Ома и предохранителе номиналом 25 Ампер он может достигнуть 100 Вольт.

Важно! В последнем случае два защитных устройства дополняют друг друга и нивелируют возможные неполадки в одном из них.

При попадании фазы на корпус, а через него – на заземляющий проводник ток благополучно стекает в землю. Одновременно с этим УЗО мгновенно реагирует на утечку и отключает линию и электроустановку, исключая возможность поражения работающего на ней персонала.

Схема работы заземления при нарушении изоляции токоведущих частей электрооборудования

Помимо этого, если ток утечки существенно превышает порог срабатывания установленного в цепи предохранителя – может сработать и сам защитный элемент, дублируя действие УЗО. Какой из этих двух приборов отключит цепь первым – зависит от их быстродействия и величины тока стекания на землю (при этом не исключается их одновременное срабатывание).

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  1. Где проложен заземляющий контур в рабочей зоне.
  2. Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  3. В каком месте накладывается стационарное заземление.
  4. Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.

Правила заземления электродвигателя

Согласно действующим нормативам электродвигатели также подлежат обязательному защитному заземлению.

Обратите внимание: Исключением из этого требования является ситуация, когда корпус электродвигателя располагается на металлическом пьедестале, непосредственно связанном с грунтом.

Во всех остальных случаях его обязательно нужно будет соединить специальной медной жилой с заземляющим контуром (фото ниже).

Читайте также:  Диагональная укладка ламината плюсы и минусы

В ПУЭ особо отмечается, что такое соединение должен иметь каждый электродвигатель, независимо от их количества в данном электрохозяйстве.

Последовательное подключение нескольких агрегатов в заземляющую цепочку категорически запрещено (в этом случае при обрыве линии в одном месте заземления лишаются все двигатели).

Для грамотного обустройства ЗУ в подводящем силовом кабеле 380 Вольт должна быть предусмотрена отдельная (дополнительная) шина. Один ее конец подключается к «земляной» клемме распредкоробки электродвигателя, а второй – непосредственно к корпусу силового шкафа.

Важно! В этом случае должна соблюдаться последовательность установки заземления, согласно которой перед подсоединением кабеля сначала к ЗУ подключается сам электрический щиток.

Сечение проводников, используемых при обустройстве заземления для электродвигателей должно соответствовать нормам, приведенным в ПУЭ (смотрите таблицу).

Таблица выбора сечения заземляющих проводников

Заземление сварочных аппаратов

При работе со сварочным оборудованием заземление его корпуса согласно требованиям ПУЭ также обязательно. Помимо этой части электрического агрегата заземляться должен один из выводов трансформаторной вторичной обмотки (к другой клемме подсоединяется держатель электродов). Заземляемый вывод на корпусе обозначается соответствующим значком и оснащается приспособлением, надежно фиксирующим протянутую от защитного контура шину.

Величина переходного сопротивления защитного контура или ЗУ для сварочного оборудования не должна превышать 10-ти Ом. Если потребуется повысить электропроводимость заземляющей конструкции – увеличивают контактную площадь всех соединений, включая поверхность соприкосновения с землей.

Как и в случае с рассмотренными ранее электродвигателями последовательное включение сварочных аппаратов в заземляющую цепочку запрещено.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

  • Наличие защитного заземления.
  • Система выравнивания потенциалов.
  • Дополнительная (усиленная) изоляция токоведущих частей.

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Заземление и зануление

Для защиты человека от удара током в особо опасных условиях эксплуатации нередко используется принцип одновременного заземления и зануления электроустановок. Всем, кто не знаком со вторым понятием, следует знать, что зануление электроустановок – это умышленное соединение их корпусов с нейтралью подводящей силовой линии. Понять принцип его действия поможет ознакомление с тем, как реализуется это способ защиты на практике.

Суть зануления состоит в превращении случайного попадания сетевого напряжения на корпус установки (из-за повреждения изоляции, например) в однофазное короткое замыкание. Отсюда следует, что и рассматриваемое нами заземление и зануление, как системы, выполняют функцию защиты от поражения электрическим током. Но делают они это каждая по-своему (смотрите фото ниже).

Схема заземления и зануления

В одном случае (при заземлении) для получения цепочки стекания тока пробоя применяется отдельное заземляющее устройство, снижающее потенциал на корпусе прибора до безопасного уровня. Для «срабатывания» системы зануления тот же корпус электрически соединяется с нейтралью питающей сети.

Токопроводящие части электроустановок подлежат заземлению или занулению во всех случаях, когда защищаемое оборудование работает в помещениях повышенной опасности (с большой запыленностью и высоким уровнем влажности). Специалистам, занимающимся вопросами его защиты важно четко представлять себе отличие этих двух понятий. Кроме того им потребуется хорошо разбираться в том как правильно сделать контур заземления для данного образца оборудования.

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Ссылка на основную публикацию
Adblock detector