Измерение неэлектрических величин электрическими методами

Измерение неэлектрических величин электрическими методами

Измерение различных неэлектрических величин (перемещений, усилий, температур и т. п.) электрическими методами выполняют с помощью устройств и приборов, преобразующих неэлектрические величины в зависимые от них электрические, которые измеряют электроизмерительными приборами со шкалами, градуированными в единицах измеряемых неэлектрических величин.

Преобразователи неэлектрических величин в электрические, или датчики , разделяют на параметрические , основанные на изменении какого-либо электрического или магнитного параметра (сопротивления, индуктивности, емкости, магнитной проницаемости и т. п.) под действием измеряемой величины, и генераторные , в которых измеряемая неэлектрическая величина преобразуется в зависимую от нее э. д. с. (индукционные, термоэлектрические, фотоэлектрические, пьезоэлектрические и другие). Параметрическим преобразователям необходим посторонний источник электрической энергии, а генераторные сами являются источниками энергии.

Один и тот же преобразователь можно использовать для измерения различных неэлектрических величин и, наоборот, измерение какой-либо неэлектрической величины можно выполнить с помощью преобразователей различных типов.

Кроме преобразователей и электроизмерительных приборов, установки для измерения неэлектрических величин имеют промежуточные звенья — стабилизаторы, выпрямители, усилители, измерительные мосты и т. п.

Для измерения линейных перемещений применяют индуктивные преобразователи — электромагнитные устройства, у которых параметры электрических и магнитных цепей изменяются при перемещении ферромагнитного магнитопровода или якоря, соединенного с перемещающейся деталью.

Для преобразования значительных перемещений в электрическую величину используют преобразователь с подвижным ферромагнитным поступательно движущимся магиитопроводом (рис. 1, а). Поскольку положение магнитопровода определяет индуктивность преобразователя (рис. 1, б), а следовательно, и его полное сопротивление, то при стабилизированном напряжении источника электрической энергии переменного напряжения неизменной частоты, питающего цепь преобразователя, можно по току судить о перемещении детали, механически связанной с магнитопроводом. Шкалу прибора градуируют в соответствующих единицах измерения, например в миллиметрах (мм).

Рис. 1. Индуктивный преобразователь с подвижным ферромагнитным магнитопроводом: а — схема устройства, б — график зависимости индуктивности преобразователя от положения его магнитопровода.

Для преобразования малых перемещений в удобную для электрического измерения величину применяют преобразователи с изменяющимся воздушным зазором в виде подковы с обмоткой и якорем (рис. 2, а), который жестко связан с перемещаемой деталью. Всякое перемещение якоря приводит к изменению тока / в обмотке (рис. 2, б), что позволяет при неизменном переменном напряжении стабильней частоты градуировать шкалу электроизмерительного прибора в единицах измерения, например в микрометрах (мкм).

Рис. 2. Индуктивный преобразователь с изменяющимся воздушным зазором: а — схема устройства, б — график зависимости тока обмотки преобразователя от воздушного зазора в магнитной системе.

Большей чувствительностью обладают дифференциальные индуктивные преобразователи с двумя одинаковыми магнитными системами и одним общим якорем, расположенным симметрично относительно обоих магнитопроводов с воздушным зазором одинаковой длины (рис. 3), у которых линейное перемещение якоря из его среднего положения одинаково изменяет оба воздушных зазора, но с разными знаками, что нарушает равновесие предварительно уравновешенного моста переменного тока из четырех обмоток. Это дает возможность судить о перемещении якоря по току измерительной диагонали моста, если он получает питание при стабилизированном переменном напряжении неизменной частоты.

Рис. 3. Схема устройства дифференциального индуктивного преобразователя.

Для измерения механических усилий, напряжений и упругих деформаций, возникающих в деталях и узлах различных конструкций, применяют проволочные преобразователи — тензорезисторы , которые деформируясь, вместе с исследуемыми деталями, наменяют свое электрическое сопротивление. Обычно сопротивление тензорезистора составляет несколько сотен ом, а относительное изменение его сопротивления — десятые доли процента и зависит от деформации, которая в пределах упругости прямо пропорциональна приложенным усилиям и возникающим механическим напряжениям.

Читайте также:  Блок питания на шим 2003

Тензорезисторы изготовляют в виде зигзагообразно расположенной проволоки большого удельного сопротивления (константан, нихром, манганин) диаметром 0,02 — 0,04 мм либо из медной специально обработанной фольги толщиной 0,1 — 0,15 мм, которые заклеивают бакелитовым лаком между двумя слоями тонкой бумаги и подвергают термической обработке (рис. 4, а).

Рис. 4. Тензорезистор: а — схема устройства: 1 — деформируемая деталь, 2 — тонкая бумага, 3 — проволока, 4 — клей, 5 — выводы, б — схема включения в плечо неуравновешенного моста резисторов.

Изготовленный тензорезистор приклеивают к тщательно очищенной деформируемой детали очень тонким слоем изоляционного клея так, чтобы направление ожидаемой деформации детали совпало с направлением длинных сторон петель проволоки. При деформации тела приклеенный тензорезистор воспринимает эту же деформацию, что изменяет его электрическое сопротивление вследствие изменения размеров проволоки датчика, а также структуры ее материала, которая сказывается на удельном сопротивлении проволоки.

Поскольку относительное изменение сопротивления тензорезистора прямо пропорционально линейной деформации исследуемого тела, а следовательно, и механическим напряжениям внутренних сил упругости, то, пользуясь показаниями гальванометра измерительной диагонали предварительно уравновешенного моста резисторов, одним из плеч которого является тензорезистор, можно судить о значениях измеряемых механических величин (рис. 4, б).

Применение неуравновешенного моста резисторов требует стабилизации напряжения источника питания или применения в качестве электроизмерительного прибора магнитоэлектрического логометра, на показания которого изменение напряжения в пределах ±20 % номинального, указанного на шкале прибора, существенного влияния не оказывает.

Для измерения температуры различных сред применяют термочувствительные и термоэлектрические преобразователи . К термочувствительным преобразователям относятся металлические и полупроводниковые терморезисторы, сопротивление которых в значительной степени зависит от температуры (рис. 5, а).

Наибольшее распространение получили платиновые терморезисторы для измерения температуры в диапазоне от -260 до +1100 °С и медные терморезисторы — для интервала температур от -200 до +200 °С, а также полупроводниковые терморезисторы с отрицательным коэффициентом электрического сопротивления — термисторы, отличающиеся высокой чувствительностью и малыми размерами по сравнению с металлическими терморезисторами, для измерения температур от -60 до +120 °С.

Для защиты термочувствительных преобразователей от повреждений их помещают в тонкостенную стальную трубу с запаянным дном и устройством для присоединения выводов к проводам неуравновешенного моста резисторов (рис. 5, б), что позволяет по току измерительной диагонали судить об измеряемой температуре. Шкалу магнитоэлектрического логометра, используемого в качестве измерителя, градуируют в градусах Цельсия (°С).

Рис. 5. Терморезисторы: а — графики зависимости изменения относительного сопротивления металлов от температуры, б — схема включения терморезисторов в плечо неуравновешенного моста резисторов.

Термоэлектрические преобразователи температуры — термопары , генерирующие небольшую э. д. с. под влиянием нагрева места соединения двух разнородных металлов, помещают в защитную пластмассовую, металлическую или фарфоровую оболочку в зоне измеряемых температур (рис. 6, а, б).

Рис. 6. Термопары: а — графики зависимости э. д. с. от температуры термопар: ТПП — платинородий-платиновой, ТХА — хромель-алюмелевой, ТХК-хромель-копелевой, б — схема установки для измерения температуры с помощью термопары.

Читайте также:  Haveg жидкая резина для кровли отзывы

Свободные концы термопары соединяют однородными проводниками с магнитоэлектрическим милливольтметром, шкала которого проградуирована в градусах Цельсия. Наибольшее распространение получили следующие термопары: платинородий — платиновая для измерения температур до 1300 °С и кратковременно до 1600 °С, хромель-алюмелевая для температур соответственно указанным режимам — 1000 °С и 1300 °С и хромель-копелевая, предназначенная для длительного измерения температур до 600 °С и кратковременного — до 800 °С.

Электрические методы измерения различных неэлектрических величин широко применяют в практике, поскольку они обеспечивают высокую точность измерений, отличаются широким диапазоном измеряемых величин, позволяют выполнять измерения и регистрацию их на значительном расстоянии от места расположения контролируемого объекта, а также дают возможность проводить измерения в труднодоступных местах.

Электрические измерительные приборы, применяемые для измерения неэлектрических величин, имеют большие преимущества по сравнению с неэлектрическими приборами, так как они позволяют как осу­ществлять дистанционные измерения, так и обеспечивать широкий диапазон чувствительности, а также позволяют измерять параметры различных быстропротекающих процессов.

Для измерения любой неэлектрической величины электрическим методом необходимо иметь преобразователь (датчик), преобразующий неэлектрическую величину в электрическую, измерительный прибор и промежуточную цепь, связывающую датчик с измерительным при­бором. Датчики подразделяют на две основные группы: параметри­ческие и генераторные. Параметрические датчики преобразуют не­электрические величины в электрические параметры r, L, С, М, μ Генераторные датчики преобразуют неэлектрические величины в Е, U, I, Р.

Электрические измерительные приборы, применяемые для измерения неэлектрических величин, градуируют непосредственно в единицах этих величин.

Датчики обычно характеризуют чувствительностью и разрешающей способностью. Под чувствительностью датчика понимают отношение

(10.19)

где ∆aвых — изменение значения электрической величины на выходе дат­чика; ∆aвх — изменение значения неэлектрической величины на его входе.

Под разрешающей способностью датчика понимают предел изменения измеряемой неэлектрической величины, в котором погрешность преобра­зования не превышает допустимого значения.

Из параметрических датчиков наиболее распространенными являют­ся реостатные (датчики сопротивления), емкостные, индуктивные дат­чики, датчики с терморезисторами, фотоэлектрические датчики, тензорезисторы, а из генераторных датчиков — термоэлектрические (термо­пары) и индукционные, в которых неэлектрическая величина преоб­разуется в э. д. с.

Реостатные датчики обычно используют в сочетании с магнито­электрическими логометрами. В этих датчиках измеряемая неэлектри­ческая величина воздействует на движок реостата, изменяя его положение и соответственно сопротивление реостата. Этот прибор может быть применен, например, для измерения уровня жидкости (рис. 10.14), причем шкалу логометра в этом случае можно отградуировать не­посредственно в единицах измеряемого уровня.

Для измерения деформаций различных конструкций используют тензорезисторы — датчики, сопротивление которых меняется вследствие изменения их геометрических размеров (рис. 10.15). Такие датчики изготовляют из константановой проволоки диаметром 20 — 30 мкм, об­ладающей большим удельным сопротивлением, и наклеивают не­посредственно на ту деталь, деформацию которой необходимо измерить.

Для измерения температур используют различные параметрические и генераторные преобразователи, наибольшее распространение из кото­рых получили термоэлектрические датчики (термопары) и терморезисто­ры (термисторы). Работа датчиков с термисторами основана на за­висимости сопротивления проводников и полупроводников от темпе­ратуры. Следует отметить, что при измерениях с использованием параметрических дат-

Читайте также:  Горловина футболки из кулирки

чиков всегда требуется вспомогательный источник электрической энергии.

Индуктивные и емкостные датчики применяют, как правило, в со­четании с электромагнитными и электродинамическими логометрами при питании измерительного устройства переменным током.

В качестве примера рассмотрим измерение уровня жидкости индук­тивным датчиком (рис. 10.16). Принцип работы прибора основан на изменении индуктивности катушки при перемещении ее сердечника (или изменений воздушного зазора) под действием измеряемой механической величины. Железный сердечник 2 связан с поплавком 3, перемещение которого влияет на индуктивность катушки 1. При изменении индук­тивности катушки происходит изменение ее индуктивного сопротивления и тока в ее цепи.

Индуктивные датчики могут быть использованы для измерения как для сравнительно больших, так и достаточно малых перемеще­ний, например для контроля небольших изменений толщины листа при прокатке.

Емкостные датчики применяют для измерения перемещений, толщины диэлектриков, механической силы и т. д. Например, в емкостном датчике при измерении толщины ленты 2 (рис. 10.17) происходит изме­нение емкости за счет изменения размеров воздушного промежутка между пластинами 1 воздушного конденсатора, вследствие чего изме­няется емкостное сопротивление конденсатора и ток в измеритель­ной цепи.

В заключение отметим, что с помощью одного и того же типа датчика можно измерять и контролировать различные неэлектри­ческие величины. Если при измерениях и контроле изменения электрической величины на выходе датчика малы, то необходимо использовать промежуточные усилители.

Широкое распространение измерения неэлектрических величии (температуры, угловых и линейных размеров, механических усилий и напряжений, деформаций, вибраций, химического состава и т.д.) электрическими методами обусловлено теми преимуществами, которыми они обладают по сравнению с другими методами. При этом создается возможность дистанционного измерения и контроля неэлектрических величин с одного места (пульта управления); измерения быстро изменяющихся неэлектрических величин; автоматизации управления производственным процессом.
Обычно такие приборы состоят из датчика и измерительного устройства.
В датчиках происходит преобразование неэлектрической величины в один из параметров электрической цепи (U, I, R и т.д.).
Измерительное устройство — это один из электрических приборов, рассмотренных выше.
Не имея возможности остановиться на каждом преобразователе, ограничимся лишь их кратким перечислением:

1.Реостатные преобразователи. Работают на изменении сопротивления реостата, движок которого перемещается под воздействием измеряемой неэлектрической величины.

2.Проволочные преобразователи (тензосопротивления). Их работа основана на изменении сопротивления проволоки при ее деформации.

3.Термопреобразователи (терморезисторы, термосопротивления). В них изменяется сопротивление датчика под воздействием температуры.

4.Индуктивные преобразователи. В них при изменении положения разъемных частей магнитопровода (например, под действием силы, давления, линейного перемещения) меняется индуктивность катушки.

5.Емкостные преобразователи. Могут быть использованы в качестве датчиков перемещения, влажности, химсостава воздуха и др.

6.Фотоэлектрические преобразователи. В них измерительный прибор реагирует на изменение освещенности, температура, перемещения и др.

7.Индукционные преобразователи. Работают на принципе преобразования неэлектрической величины (например, скорости, ускорения) в индуктированную ЭДС.

8.Термоэлектрические преобразователи. Основаны на возникновении термо ЭДС и ее зависимости от температуры.

9. Пьезоэлектрические преобразователи. Работают на принципе возникновения ЭДС при воздействии усилий на кристаллы некоторых материалов.

Дата добавления: 2015-08-11 ; просмотров: 568 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Adblock detector