Гигроскопичность это эстетическое свойство материала

Гигроскопичность это эстетическое свойство материала

При оценке качества тканей большое значение имеют их гиги­енические свойства. Ткани должны защищать человека от вредных воздействий внешней среды, в т. ч. атмосферных воздействий, со­здавать нормальные условия для жизнедеятельности, быть без­вредными (волокна и нанесенные на ткань препараты не должны выделять вредных примесей) и создавать максимальные удобства при носке. Создание максимальных удобств (комфортности) при носке швейных изделий зависит от способности ткани регулиро­вать пододежный климат — газовый состав, влажность и темпера­туру, снимать электростатические заряды и др.

Гигиеническими принято считать ряд физических свойств тканей, которые учитываются при изготовлении одежды опреде­ленного назначения. К гигиеническим свойствам относятся гиг­роскопичность, воздухопроницаемость, паропроницаемость, во­доупорность, капиллярность, водопоглощаемость, намокаемость, пылеемкость, электризуемость, теплозащитные свойства и др. Эти свойства зависят от волокнистого состава, параметров строения и характера отделки тканей.

Гигроскопичность характеризует способность ткани впиты­вать влагу из окружающей среды (воздуха). Гигроскопичность (Й^) влажность материала при 100%-й относительной влаж-

ности воздуха и температуре 20 ± 2 °С. Ее можно определить по формуле, %:

где тюо — масса образца материала, выдержанного в течение 4 ч при относительной влажности воздуха, равной 100%, г; тс масса абсолютно сухого образца, г.

При оценке гигроскопических свойств текстильных материалов часто пользуются характеристикой их фактической влажности.

Влажность фактическая (И^) показывает содержание влаги в материале при фактической влажности воздуха и определяется

по следующей формуле, %:

где ^ — масса образца при фактической влажности воздуха, г; тс -масса абсолютно сухого образца, г.

Наибольшей гигроскопичностью обладают чистошерстяные изделия.

Гигроскопичность очень важна для изделий бельевого и летне­го ассортимента. Способностью быстро впитывать влагу и быстро ее отдавать обладают льняные ткани, гигроскопичность которых около 12%. Хорошей гигроскопичностью обладают ткани из нату­рального шелка, вискозных волокон, хлопка, ацетатных волокон. Синтетические и триацетатные ткани имеют низкие значения по­казателей гигроскопичности.

Воздухопроницаемость — способность пропускать воздух. Она зависит от волокнистого состава, плотности и отделки тка­ни и характеризуется коэффициентом воздухопроницаемости В , дм 3 /(м 2 -с), который показывает, какое количество воздуха прохо­дит через единицу площади в единицу времени при определенной разнице давлений по обе стороны материала.

Коэффициент воздухопроницаемости подсчитывается по фор­муле

где V’- объем воздуха, прошедшего через материал, дм 3 ; 5- площадь материала, м 2 ; т — длительность прохождения воздуха, с.

Воздухопроницаемость очень важна для тканей бельевого и летнего ассортимента. Малоплотные ткани, имеющие большое количество сквозных пор, обладают хорошей воздухопроницае­мостью и, следовательно, вентилирующей способностью. Плотные ткани из синтетических и триацетатных волокон, ткани со спец­пропитками и отделками, создающими на поверхности материала пленочные покрытия и слои резины, не обладают воздухопрони­цаемостью или имеют низкий показатель этого свойства. Вмес­те с тем материалы с низкой воздухопроницаемостью обладают хорошей ветростойкостью. Именно поэтому ткани с пленочными покрытиями широко используются для изготовления штормовок, курток, стеганых пальто.

Паропроницаемость — способность ткани пропускать водяные пары. Коэффициент паропроницаемости В^, г/(м 2 -ч) показывает, какое количество водяных паров проходит через единицу площади материала в единицу времени:

где А — масса водяных паров, прошедших через пробу материала, г; 5 — площадь пробы материала, м 2 ; т — время испытания, ч.

Паропроницаемость является важнейшим гигиеническим по­казателем материала, т. к. она обеспечивает выход излишней паро­образной и капельно-жидкой влаги (пота) из пододежного слоя.

Паропроницаемость зависит от гигроскопических свойств во­локон и нитей, составляющих ткань, и от пористости ткани, т. е. от ее плотности, вида переплетения и характера отделки.

Капиллярность характеризуется высотой (А, мм), на которую поднимается за определенное время

по полоске ткани размером 50 х 300 мм. Капиллярность непосред­ственно связана с волокнистым составом, пористостью и отделкой ткани.

Водопоглощаемость характеризуется процентным отношением массы влаги, поглощенной погруженным в воду образцом, к массе сухого образца:

где т — масса образца после намокания в течение 1 ч в дистилли­рованной воде при температуре 20 °С; тс — масса сухого образца.

Водоемкость, или намокаемость, — количество воды, погло­щенной тканью площадью 1 м 2 .

Водоупорность — способность ткани сопротивляться первона­чальному прониканию воды. Водоупорность особенно важна для ряда тканей специального назначения (брезента, палаток, пару­сины), а также для шинельных, шерстяных пальтовых, плащевых и курточных тканей. Водоупорность тканей определяется их волок­нистым составом, показателями строения и характером отделки.

Теплозащитные свойства являются важнейшим гигиеническим показателем изделий зимнего ассортимента. Эти свойства зависят от теплопроводности волокон, образующих ткань, плотности, тол­щины и отделки ткани. Самым холодным волокном считается лен, т. к. он имеет высокие показатели теплопроводности, самым теп­лым — шерсть. Использование толстой пряжи, увеличение линей­ного заполнения ткани, применение многослойных переплетений, проведение в процессе отделки валки, ворсования, прессования увеличивают теплозащитные свойства ткани. Наиболее высокие показатели теплозащитных свойств имеют толстые плотные шер­стяные ткани с начесом.

Электризуемостъ — способность тканей накапливать на своей поверхности статическое электричество. При соприкосновении и особенно при трении, неизбежно происходящих при исполь­зовании текстильных изделий и их химической чистке, на их по-

верхности постоянно идет процесс возникновения и рассеивания электрических зарядов. Если равновесие между возникновением зарядов и их рассеиванием нарушается, на поверхности текстиль­ных материалов создается определенный электрический потенци­ал — происходит электризация. Электризуемость непосредственно связана с природой образующих материал волокон, их строением, влажностью.

Электризуемо сть различается по величине и полярности заря­да. Установлено, что ткани, содержащие в своем составе различ­ные синтетические волокна, могут быть сильно- или малоэлект­ризующимися, а также иметь положительную или отрицательную полярность. Природные волокна при трении накапливают поло­жительные заряды, что благоприятно влияет на гигиенические свойства одежды.

Пылеемкость — способность материалов удерживать пыль. Она характеризуется относительной пылеемкостью (/?отн, %)

где т — количество пыли, поглощенной материалом, г; /и — количество пыли, взятой для испытания, г.

Читайте также:  Виды карт памяти для фотоаппаратов

Пылеемкость портит внешний вид ткани и способствует за­грязнению одежды. Наибольшей пылеемкостью обладают ткани из рыхлых пушистых текстурированных нитей, материалы с вер­тикально стоящим ворсом (бархат, велюр, плюш, искусственная замша, вельветы и др.), рыхлые шерстяные ткани с начесом.

К художественному оформлению тканей — разнообразию рисунков, цветовых тонов, их красочности, соответствию моде предъявляют высокие требования, т. к. ткани являются товарами массового потребления. Внешний вид тканей оказывает большое влияние на формирование спроса. Эстетические свойства форми­руются на всех стадиях производства тканей.

Основные эстетические свойства тканей — фактура, цветовое оформление, блеск, прозрачность, матовость, жесткость, драпиру-емость, упругость, сминаемость, стабильность формы в эксплуа­тации. Все эти показатели по-разному влияют на формирование эстетических свойств тканей и изготовленных из них изделий.

Фактура. Волокнистый состав, структурные особенности стро­ения ткани, особенности ее отделки определяют фактуру ткани. Фактура тканей разнообразна и во многом зависит от их назначе­ния. Разновидности ткани по фактуре: ткани с открытым ткацким рисунком — фактура гладкая, шероховатая, узорно-гладкая и узор-но-рельефная; ткани с закрытым и полузакрытым ткацким рисун­ком — фактура войлокообразная, начесно-ворсовая и ворсовая.

Колористическое оформление. По цветовому оформлению тка­ни могут быть отбеленными, гладкокрашеными, меланжевыми, пестроткаными, набивными (печатными), отваренными, кисло-ванными и суровыми.

При оценке текстильного рисунка определяют не только его художественный уровень, новизну, гармоничность формы и цве­тового оформления, но и соответствие назначению одежды и тех­нологичность, т. е. возможность производственного исполнения.

По тематике рисунки на тканях делят на геометрические, ор­наментальные, абстрактные, национальные, детские.

Эффекты заключительной отделки тканей — блестящая или матовая отделка, эффекты гофре и клоке, муаровая отделка, ажур­ные узоры, металлизированная поверхность и др.

Блеск и матовость зависят от фактуры ткани и внешних ус­ловий. Свет от гладкой поверхности ткани отражается в одном направлении (зеркально), и она кажется более блестящей. Если падающий свет отражается от поверхности в разных направле­ниях, т. е. рассеивается, то поверхность ткани представляется ма­товой. Блеск ткани зависит от гладкости волокон, равномерности коэффициентов преломления света, расположения волокон в нити (пряже), а также от строения ткани и способа отделки. Цвет тканей с блестящей поверхностью воспринимается более светлым и яр­ким, а тканей с матовой поверхностью — более темным.

Прозрачность тканей связана с их способностью пропускать лучи видимой части спектра. Чем больше поверхностное запол­нение и толщина нитей, чем темнее окраска ткани, тем меньше ее просвечиваемость. Прозрачность имеет большое значение для блузочных, платьевых, сорочечных тканей и других текстильных изделий. В зависимости от степени прозрачности ткани можно подразделить на высокопрозрачные, прозрачные, полупрозрачные и непрозрачные.

Драпируемостъ — способность тканей образовывать складки под действием собственной массы. Ткани с хорошей драпирующей способностью образуют симметрично спадающие складки с малым рисунком кривизны. С увеличением жесткости и толщины драпи-руемость тканей ухудшается, вследствие чего образуются более крупные складки. Чем тоньше и легче ткань, тем легче мелкие ниспадающие складки.

Мягкость ткани зависит от многих факторов: свойств волокон, крутки пряжи, плотности, переплетения и отделки ткани.

Жесткость — величина, обратная мягкости, влияет на драпи-руемость и формоустойчивость тканей в изделиях. Для изготовле­ния изделий с достаточно устойчивой поверхностью необходимо использовать ткани определенной жесткости.

Кроме показателя жесткости при изгибе, большое значение при органолептической оценке тканей имеет жесткость на ощупь, от которой во многом зависит туше ткани. Туше ткани определяют на ощупъ: чистошерстяная костюмная ткань из тонкой шерсти — уп­ругая и мягкая; полушерстяная с синтетическим волокном — жест­кая; крепдешин из натурального шелка — шелковистый со скрипом и т. д. Органе л ептически ткань оценивают в первую очередь по цвету и туше.

Сминаемость влияет на внешний вид тканей. Одежда из тканей, характеризующихся значительным упругим удлинением, сохраняет форму при эксплуатации. Если же одежда изготовлена из тканей, характеризующихся большими остаточными деформациями, то она быстро теряет форму, особенно на участках одежды, которые подвергаются интенсивному воздействию, — на локтях, коленях и т. д. Потеря формы не только портит внешний вид изделия, но

и отражается на его износостойкости, т. к, деформированная ткань быстрее изнашивается.

Волокнистый состав, строение и отделка тканей определяют ее сминаемость. Наибольшей сминаемостью обладают ткани из растительных волокон: хлопчатобумажные, вискозные, полиноз-ные и особенно чистольняные.

Ткани из волокон животного происхождения и ряда синтетиче­ских волокон (полиамидные, полиэфирные, полиуретановые, поли-олефиновые), обладающих высокой упругостью и эластичностью, слабо сминаются и восстанавливают первоначальную форму без влажно-тепловой обработки.

Увеличение крутки пряжи, повышение плотности тканей пре­пятствуют смещению и деформации волокон при кручениях и сжа­тиях, поэтому уменьшают сминаемость тканей.

Сминаемость можно определить визуально (сжимая ткань в руке) при сравнении с эталонами или на приборах по углу вос­становления складок в ткани после смятия.

Технологические свойства характеризуют способность ткани подвергаться обработке на разных стадиях процесса изготовления изделий. В процессе пошива изделий важны следующие свойства тканей: характер внешнего оформления (удобство раскроя), плас­тичность при влажно-тепловой обработке, драпируемость, осыпае­мость и раздвижка нитей, прорубаемо сть, жесткость, мягкость, раз­мерные показатели (ширина, длина), поверхностная плотность.

способность ткани к усадке и фиксированно­му удлинению при влажно-тепловой обработке.

Осыпаемость ткани по краям срезов — это следствие недоста­точно прочного закрепления нитей в ткани. У тканей с большой осыпаемостью уменьшается прочность закрепления швов, что от­ражается на сроке службы и внешнем виде изделий.

Поц, раздвижкой понимают смещение нитей в тканях при экс­плуатации под воздействием внешних сил. Раздвижка нитей чаще всего происходит около швов, а также в тех местах, где ткани в из-

делии испытывают многократные напряжения (пройма, спинка, локтевой шов, задний шов брюк и др.).

Прорубаемоспгь возникает при повреждении нитей иглой швей­ной машины. При пошиве изделий игла, прокалывая ткань, может пройти между нитями, повредить часть нити или разорвать ее. Степень прорубаемости зависит от подвижности нитей в ткани, их толщины, крутки и плотности расположения. На прорубаемость влияют толщина иглы и заостренность ее конца.

Читайте также:  Блюда из тыквы с овощами

К технологическим свойствам следует отнести также сопротив­ляемость ткани загрязняемо сти, легкость очистки, восстановление формы тканей в изделиях после эксплуатации, стирки и химиче­ской чистки.

Скорость и степень загрязнения волокон и тканей зависят от их структуры: ткани более плотных гладких переплетений (сатинового, атласного) меньше загрязняются, чем полотняного. На степень загрязнения тканей влияют вид и количественное содержание синтетических волокон в тканях. Так, ткани, содер­жащие 40% полиэфирного волокна, при искусственном сухом методе загрязнения пылью загрязняются в 5-6 раз сильнее, чем костюмные чистошерстяные ткани аналогичного назначения, а ткани, содержащие 65% полиэфирных волокон, — даже в 10 раз сильнее. Установлено, что на загрязняемо сть этих тканей ока­зывает влияние характер загрязнителя: наиболее интенсивно загрязняются образцы тканей при воздействии гидрофильного загрязнителя (например, оксида железа), меньше — гидрофобного (например, сажи).

Факторы, влияющие на скорость и степень загрязнения волокон и тканей, несомненно, важны и при удалении загрязнений. При оценке способности волокон очищаться под действием стирки или химической чистки необходимо учитывать физические и химиче­ские свойства волокна, структуру ткани, характер загрязнителя и в зависимости от этого применять те или иные моющие средства или растворители, температуру, характер обработки, режим сушки и глаженья. Как правило, гидрофильные волокнистые материалы (хлопок, лен, вискоза) сравнительно легко загрязняются, но легко очищаются при стирке.

Усадка — уменьшение размеров под действием влаги и повы­шенных температур или только под действием повышенных тем­ператур (тепловая усадка). Усадка происходит при замачивании, обработке в водных растворах моющих средств, при влажно-теп­ловой обработке изделий после стирки или химической чистки.

Определение усадки производится в соответствии с метода­ми, установленными стандартами: для шерстяных тканей после пробного замачивания образца ткани, для прочих — после пробной стирки.

Усадку определяют всегда отдельно по основе и утку и вычис­ляют по формулам, %:

где L <и L[ — первоначальные размеры ткани по основе и утку;

L2 и L2 " размеры ткани по основе и утку после замачивания или стирки.

Усадка тканей зависит от их волокнистого состава, плотности и характера отделки.

Наибольшую усадку дают шерстяные изделия, высыхающие в свободном состоянии после замачивания или обработки в вод­ных растворах моющих средств. Поэтому рекомендуется сухая химическая чистка одежды из шерстяных тканей.

Основное количество тканей, выпускаемых промышленностью, используется для производства одежды. Одежда необходима человеку для защиты тела от неблагоприятных воздействий внешней среды — низкой и высокой температуры, чрезмерной радиации, ветра, дождя, снега и др. Кроме этого она защищает от механических и химических повреждений кожного покрова, предохраняет поверхность тела человека от пыли, грязи, микроорганизмов, защищает от укусов насекомых и животных.

Основными показателями гигиенических свойств тканей являются: отсутствие в тканях вредных для человеческого организма веществ, сорбционные свойства тканей, проницаемость, теплозащитные свойства, пылеемкость и др.

Гигроскопичность — способность ткани поглощать водяные пары из окружающей атмосферы и удерживать их при определенных условиях. Это одно из важнейших свойств тканей. Гигроскопичность тканей изменяется с изменением относительной влажности воздуха и температуры, не оставаясь постоянной. Если бы содержание влаги в ткани не изменялось при изменении температуры и влажности, то гигроскопические свойства тканей потеряли бы свое значение в гигиеническом отношении. Ткани с определенной гигроскопичностью являются регулятором тепла между телом человека и окружающей средой.

Известно, что относительная влажность воздуха в закрытом помещении ниже, чем на открытом воздухе, особенно зимой и осенью (40—50 % — в помещении, 90—100 % — на улице). Благодаря этому поглощение влаги одеждой в помещении будет меньше, чем на открытом воздухе. Процесс адсорбции и кон

денсации водяных паров сопровождается выделением большого количества тепла, которое должно компенсировать снижение температуры воздуха при переходе из закрытого помещения на открытый воздух.

Количество выделенного при этом тепла эквивалентно тому количеству тепла, которое выделяется человеком за 3—4 ч. Следует отметить, что выделение тепла происходит не мгновенно, а в течение нескольких часов.

Гигроскопичность тканей зависит от их волокнистого состава, структуры, отделки и др.

Намокаемость — способность тканей впитывать капельно жидкую влагу. Это свойство является важным для бельевых, сорочечных, платьевых, полотенечных, простынных и других тканей. Намокаемость тканей характеризуется ее капиллярностью и водопоглощаемостью.

Капиллярность определяют по высоте подъема жидкости за один час в полоске ткани шириной 50 мм и длиной 300 мм, опущенной одним концом в кристаллизатор с раствором эозина (2 г/л) в спирте,

Водопоглощаемость определяют по прйвесу образца ткани, погруженного в воду на 1 мин. Намокаемость ткани считается достаточной, если капиллярность ее находится в пределах 100—140 мм и водопоглощение составляет более 100 % .

Водоупорность — способность текстильных материалов противостоять смачиванию. Водонепроницаемость — способность текстильных материалов противостоять смачиванию и проникновению воды.

Для придания тканям водоупорности их поверхность подвергается специальной обработке гидрофобными составами. Поскольку поры при этом не заполняются, такие ткани способны пропускать воздух и водяные пары.

В водонепроницаемых тканях поры заполнены специальным составом, образующим непрерывный слой или пленку, благодаря чему ткани не пропускают пары влаги, воздух, что значительно ухудшает гигиеничность тканей. Показатель водоупорности имеет большое значение для плащевых, пальтовых и костюмных шерстяных тканей. Водонепроницаемость важна для брезентов, палаточных тканей, зонтичных, плащевых и др.

Воздухопроницаемость — способность тканей пропускать воздух и обеспечивать вентилируемость одежды, создавая определенных газовый и влажностный состав пододежного пространства. Известно, что в воздушном пространстве содержится 0,03—0,04 % углекислого газа, а в пододежном пространстве

его может накапливаться 0,06—0,08 %. Гигиенисты утверждают, что при содержании углекислого газа в пододежном пространстве более 0,1 % наступает утомление и обморочное состояние. Чем больше пористость, тем больше воздухопроницаемость. Воздухопроницаемость ткани при данном давлении определяют по следующей формуле:

Читайте также:  Актинидия аргута плодовые и ягодные культуры

Паропроницаемость — способность тканей пропускать водяные пары, непрерывно образующиеся в пододежном пространстве. При определенных условиях (обильном потоотделении) количество водяных паров достигает больших размеров. При нормальных условиях человеческий организм выделяет 1 л водяных паров, при работе — 5—б л, интенсивной работе — 12 л.

Паропроницаемость характеризуется количеством миллиграммов паров воды, проходящих через 1 см 2 ткани за 1 ч (мг/1 см 2 /ч). Этот показатель является важной характеристикой определяющих потребительскую ценность бельевых, платьевых, блузочных, костюмных, пальтовых, подкладочных тканей.

Лучепроницаемостъ — наиболее важна проницаемость ультрафиолетовых лучей. Это свойство имеет большое значение, так как эти лучи в определенных количествах жизненно необходимы для жизнедеятельности человека. Это свойство тканей зависит от их волокнистого состава, структуры и отделки. Попадающие лучи могут не только проникать через одежду, но и отражаться и поглощаться ею.

Теплозащитность — способность сохранять тепло, выделяемое телом человека. Теплозащитные свойства являются одними из важных показателей для многих текстильных изделий, предназначенных для теплой одежды.

Обмен тепла между телом одетого человека и окружающей его средой — сложное и многообразное явление, в котором имеют место разные биологические и физические процессы, при этом сущность теплозащитного действия одежды не остается одинаковой. Она меняется в зависимости от рода одежды, климатических условий и условий труда, состояния организма человека и определяется различными свойствами тканей.

Передача тепла через ткань одежды может происходить: конвекцией, теплопроводностью, излучением, проведением паров влаги, выделяемой телом человека.

Теплоизолирующие свойства тканей зависят от многих факторов, но важнейшим является то, какое количество воздуха находится в закрытых порах ткани, которое зависит от волокнистого состава тканей, их структуры и характера отделки.

Пылеемкость — способность ткани воспринимать пыль и различные загрязнения из окружающей среды. Это — отрицательное свойство тканей, которое зависит от волокнистого состава тканей, ее структуры и отделки.

Свойства тканей

В основном, ткани, выпускаемые современной промышленностью, используются для изготовления одежды. Одежда нужна человеку для предохранения от нежелательных влияний окружающей среды — от перепадов температуры, радиации, осадков и прочих факторов. Кроме того она защищает от повреждений кожи, защищает тело человека от пыли, загрязнений, микробов, укусов насекомых и животных.

Главными показателями гигиенических свойств тканей являются: отсутствие вредных составляющих, поглощающие свойства тканей, паро- водопроницаемость, теплозащитные свойства, пылеемкость и прочее.

Гигроскопичность- способность ткани впитывать влагу из окружающей среды. Наибольшей гигроскопичностью обладают чистошерстяные изделия. Гигроскопичность очень важна для изделий бельевого и летнего ассортимента. Способностью быстро впитывать влагу и быстро ее отдавать обладают льняные ткани, ткани из натурального шелка, вискозы, хлопка. Синтетические волокна обычно обладают небольшой гигроскопичностью. Отделка ткани может существенно влиять на гигроскопичность ткани: водоотталкивающие пропитки, пленочные покрытия, отделка лаком, противоусадочное и противосминаемое пропитывание снижают гигроскопичность тканей. Гигроскопичность ткани определяет многие свойства ткани (электризуемость, паропроницаемость, водоупорность).

Воздухопроницаемость – способность ткани пропускать воздух, она определяет вентилирующие свойства тка

Ткани из натуральных волокон, которые состоят из тонких ворсинок, обладают более высокой воздухопроницаемостью, чем ткани из монолитных химических волокон. Однако ткани, переплетение которых имеет большое количество сквозных пор обладают хорошей воздухопроницаемостью, независимо от типа волокон, входящих в состав.

Теплозащитные свойства – определяются способностью ткани проводить тепло (менять свою температуру в зависимости от температуры окружающей среды). Теплозащитные свойства зависят от теплопроводности образующих ткань волокон, плотности, толщины и отделки ткани. Самым холодным волокном считается лен, так как он имеет высокие показатели теплопроводности, теплопроводность). Низкая теплопроводность шерсти определяется наличием в центре волокон шерсти канала с воздухом.

Использование толстой пряжи, увеличение линейного заполнения ткани, применение многослойных переплетений, ворсирования увеличивают теплозащитные свойство ткани.

Паропроницаемость – способность ткани пропускать водяные пары. Это свойство обеспечивает выход излишней парообразной и капельно-жидкой влаги (пота) из пододежного слоя.

Паропроницаемость зависит от гигроскопических свойств волокон, от плотности ткани, вида переплетения и характера отделки.

В материалах с неплотным переплетением пары влаги проходят через поры ткани, в более плотных материалах паропроницаемость должна обеспечиваться высокой гигроскопичностью волокон. Соответственно, даже синтетические ткани с низкой гигроскопичностью могут обладать хорошей паропроницаемостью, если переплетение нитей обеспечивает это. Например, профессиональная спортивная одежда изготовляется именно из синтетических тканей, которые обладают высокой воздухо — и паропроницаемостью за счет особой выделки и переплетения нитей.

Водоупорность – способность ткани сопротивляться первоначальному проникновению воды. Это свойство важно для демисезонных курток, плащей, пальто.

Электризуемость – способность ткани накапливать на своей поверхности статистическое электричество. При трении постоянно идет процесс возникновения и рассеивание электрических зарядов. Если заряды возникают и не рассеиваются на поверхности образуется определенный электрических потенциал – происходит электролизация. Синтетические волокна, имеющие низкие показатели гигроскопичности, обладают способностью сильно электролизоваться, т. е. имеют высокие электроизоляционные свойства.

Величина образующегося на поверхности ткани электрического заряда и его знак (положительный или отрицательный) оказывают биологическое воздействие на организм. Натуральные, вискозные и полиамидные (нейлон) волокна способствуют созданию на коже человека отрицательно электрического поля, которое благотворно действует на человека. Существуют специальные синтетические волокна, из которых изготовляется лечебное белье, действие которого основано именно на высокойэлектризуемости. Большинство синтетических волокон создают положительное электрическое поле, которое неблаготворно действует на человека. При разработке новых текстильных материалов электризуемость можно менять рациональным подбором компонентов, входящих в состав смеси волокон. Например, сочетание волокон, накапливающих заряды противоположного знака, снижает электризуемость.

Пылеемкость – способность материалов удерживать пыль. Наибольшую пылеемкостью обладают ткани из рыхлых пушистых нитей (бархат, велюр, вельвет).

Ссылка на основную публикацию
Adblock detector