Гальванический элемент на схеме

Гальванический элемент на схеме

Из двух электродов может быть составлена электрохимическая система – гальванический элемент.

Гальванический элемент – устройство, в котором химическая энергия окислительно-восстановительных процессов преобразуется в электрическую.

Гальванический элемент состоит из двух электродов и ионного проводника между ними. В качестве электродов используются металлы, уголь и другие вещества, обладающие электронной проводимостью (проводники 1-го рода). Отдельный электрод в гальваническом элементе иногда называют полуэлементом. Ионным проводником (проводником 2-го рода) служат растворы или расплавы электролитов. Для обеспечения работы гальванического элемента, электроды соединяют друг с другом металлическим проводником, называемым внешней цепью. В качестве ионного проводника используется «соляный мостик» – изогнутая (U-образная) стеклянная трубка, заполненная насыщенным раствором хлорида калия KCl. Внутреннюю цепь составляет собственно гальванический элемент.

Существуют определенные правила записи электрохимических систем:

· слева располагают электрод, имеющий более отрицательный потенциал(знак «–»), справаэлектрод, имеющий более положительный потенциал(знак «+»):

или в ионной форме:

Al │ Al 3 + ║ Ni 2+ │Ni;

· растворы отделяют вертикальной пунктирной линией, если они контактируют друг с другом:

Pt, H2│HCl ¦ CuCl2│Cu;

двумя вертикальными линиями – если между ними находится соляный мостик:

Zn │ Zn 2+ ║ Ag + │Ag.

Гальванический элемент может быть сделан из двух одинаковых электродов, помещенных в растворы с различными концентрациями солей (активностями катионов). Металлический электрод, помещенный в более разбавленный раствор, выполняет функцию отрицательного, а помещенный в более концентрированный – положительного электрода. Такая разновидность гальванического элементаназывается концентрационным гальваническим элементом. Схема концентрационного гальванического элемента также может быть записана в виде:

(–) Zn | Zn 2+ || Zn 2+ | Zn (+).

Составим гальванический элемент, состоящий из двух металлов, Al и Ni, погруженных в растворы собственных солей (рис. 8.1).

Рис. 8.1. Схема гальванического элемента

Данный гальванический элемент может быть представлен следующей схемой:

Пользуясь табличными данными, выписываем значения стандартных электродных потенциалов для каждого электрода:

= –1,66 В; = –0,25 В.

В паре Al – Ni алюминий имеет более отрицательное значение электродного потенциала, поэтому на схеме гальванического элемента записан слева и обозначен знаком «–», никелевый электрод по сравнению с алюминиевым является более положительным (знак «+»), поэтому записан справа. При замыкании внешней цепи электроны начинают переходить от алюминиевого электрода к никелевому, что на схеме указывается в виде стрелки сверху.

Во внутренней цепи протекают следующие реакции на электродах:

на аноде – процесс отдачи электронов, т.е. окисление

(–)А: Al 0 – 3 ē → Al 3+ (окисление);

на катоде — процесс приема электронов, т.е.востановление

(+)К: Ni 2+ + 2 ē → Ni 0 (восстановление).

Электроны по внешней цепи движутся от восстановителя к окислителю, с анода на катод (А→К).

Приведем расчет электродных потенциалов с учетом концентраций растворов, например 0,001 моль/л.

Для этого используем уравнение Нернста для металлического электрода:

= + lg [Me z + ],

где – стандартный электродный потенциал,

z – количество электронов, участвующих в элементарном акте окисления или восстановления;

[Me z + ] – концентрация ионов металла в растворе.

= -1,66 + lg (0,001) = -1,66 + (-3) = -1,72 В.

= -0,25 + lg (0,001) = -0,25 + (-3) = -0,34 В.

Проводим расчет ЭДС (E) гальванического элемента и ΔG протекающей в нем реакции, помня, что z берется с учетом наименьшего общего кратного коэффициентов электронного баланса:

ΔG = -zF E = -6×96500×1,38×10 -3 = -799 кДж.

Так как значение ΔG 21 22232425Следующая ⇒

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Гальванический элемент – это устройство, способное преобразовывать свободную энергию Гиббса окислительно-восстановительной реакции в электрическую.

Элемент состоит из двух электродов (например, цинк и медь), опущенных в растворы собственных солей (или другого электролита) и соединенных проводником.

Растворы солей также приведены в электрический контакт полупроницаемой мембраной или электролитическим ключом в виде стеклянной трубки, заполненной насыщенным раствором КСl.

При этом через проводник протекает электронный ток, а на электродах в растворе электролита протекают окислительно-восстановительные реакции. На внутреннем участке электрической цепи гальванического элемента (растворы солей и насыщенный раствор КСl) протекает ионный ток.

Например, для элемента Даниэля-Якоби:

– на аноде Zn 0 -2e=Zn 2+ – окисление;

– на катоде Cu 2+ +2e=Cu 0 – восстановление.

Уравнение токообразующей реакции:

Zn 0 + Cu 2+ =Zn 2+ +Cu 0 .

Схема гальванического элемента: .

Электродвижущая сила (ЭДС) гальванического элемента (ε) выражается разностью установившихся электродных потенциалов катода и анода:

Читайте также:  Интерьер кабинета для женщины

При стандартных условиях (при погружении металла в раствор собственного иона с одномоляльной концентрацией при температуре Т=25°С), электродный потенциал металла равен его стандартному электродному потенциалу (прил. 6).

В условиях, отличающихся от стандартных, электродный потенциал металла (Е) зависит от концентрации его ионов в растворе (при постоянной температуре), что выражается уравнением Нернста:

где Е 0 — стандартный электродный потенциал, В; n – число электронов, принимающих участие в процессе (заряд иона); Сm – моляльная концентрация (активность) гидратированных ионов металла в растворе, моль/кг Н2О.

Пример 1. Составьте схемы двух гальванических элементов, в одном из которых металл был бы катодом, а в другом – анодом. Напишите уравнения реакций, протекающих на электродах в гальванических элементах. Определите ЭДС элементов при температуре 298 К, если активность ионов обоих металлов в первом элементе равна 0,01 моль/кг Н2О, а в другом 1,0 моль/кг Н2О.

Решение.Металл – медь. Составим элемент, в котором медный электрод является катодом. Анодом можно выбрать любой металл, имеющий меньший электродный потенциал, например – магний.

Схема гальванического элемента: (-) Mg/ Mg 2+ //Cu 2+ /Cu (+).

Реакция на катоде: Cu 2+ (водн.) +2e=Cu(тв.)

Уравнение токообразующей реакции:

Значения потенциалов электродов рассчитаем по уравнению Нернста:

,

,

Составим элемент, в котором медный электрод является анодом. Катодом можно выбрать любой металл, имеющий больший электродный потенциал, например, ртуть:

(-)Cu / Cu 2+ //Hg 2+ / Hg (+).

Запишем уравнение реакций:

Так как активность ионов металла в растворах равна 1 моль/кг воды, то в данном элементе оба значения потенциалов – стандартные:

.

Электролиз

Электролизом называется процесс раздельного окисления и восстановления на электродах, опущенных в раствор электролита, осуществляемый за счет протекания тока от внешнего источника ЭДС. При этом на аноде происходит окисление, а на катоде – восстановление и выделение металла. При электролизе расплавов электролитов на катоде всегда протекает восстановление катионов:

На аноде – окисление соответствующих анионов:

Аn m— — me — = Аn 0

Как правило, анодный процесс сопровождается вторичными химическими реакциями – рекомбинацией атомов в молекулы:

либо распадом нейтральной сложной частицы на два вещества, одно из которых является простым:

Пример 1.Написать уравнения процессов, происходящих при электролизе расплава фторида алюминия AlF3 (материал катода – алюминий, материал анода – графит).

В расплаве AlF3 диссоциирует согласно уравнению:

Под действием электрического поля катионы Al 3+ движутся к катоду и принимают от него электроны:

Al 3+ + 3е — → Al 0 – процесс восстановления.

Анионы F — движутся к аноду и отдают электроны:

F — — е — → F 0 – процесс окисления,

Al 3+ + 3е — → Al 0

2 Al 3+ + 6 F — →2 Al 0 + 3 F2 0

электролизз

2 AlF3 2 Al 0 + 3 F2 0

В растворах электролитов электролиз осложняется возможностью участия молекул растворителя (например, воды) в электродных процессах. Если система, в которой проводят электролиз, содержит разные окислители, то на катоде будет восстанавливаться наиболее активный из них, т.е., окисленная форма той электрохимической системы, которой отвечает наибольшее значение электродного потенциала.

В зависимости от состава электролита на катоде могут протекать (в том числе и параллельно) следующие реакции:

1) восстановление катионов металла:

2) восстановление молекул воды:

Первая реакция исключительно протекает в растворах солей только тех металлов, которые в ряду напряжения находятся после водорода, то есть имеют больший, по сравнению с водородом электродный потенциал.

Вторая – только в растворах наиболее активных металлов, находящихся в начале ряда напряжений вплоть до алюминия. Их электродный потенциал значительно отрицательнее потенциала водородного электрода в нейтральной водной среде (-0,41 В). Для растворов солей металлов, имеющих электродный потенциал, близкий к -0,41 В, и составляющих середину ряда напряжений, характерно протекание обеих катодных реакций.

В растворах кислот на катоде протекает водородная реакция:

Следует отметить, что в качестве катода можно использовать любой токопроводящий материал, кроме наиболее активных щелочных и щелочноземельных металлов. Большинство других металлов, а также графит, устойчиво в любых электролитах при катодном заряжении.

Аналогично, при наличии в системе, подвергающейся электролизу, нескольких восстановителей, на аноде будет окисляться наиболее активный из них, т.е. восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала. На аноде может протекать несколько окислительных процессов:

1) растворение материала анода (кроме платины и графита):

2) окисление анионов соли или кислоты

Аn m— — me — = Аn 0

Читайте также:  Вязка кота и кошки первый раз

3) окисление молекул воды:

На нерастворимых анодах (платина, графит и некоторые металлы, образующие на своей поверхности защитную токопроводящую оксидную пленку, например, Pb в растворе Н24 образует PbО2) конкурируют реакции 2 и 3. Для бескислородных кислот и их солей предпочтительнее реакция 2, например:

В растворах кислородных кислот и их солей, а также фторидов металлов протекает исключительно реакция окисления молекул воды.

В водных растворах щелочей на нерастворимых анодах протекает гидроксильная реакция:

Пример 2.Написать уравнения процессов, происходящих при электролизе раствора хлорида меди (анод – черновая медная пластина).

Решение.Если анод изготовлен из металла, способного окисляться в условиях электролиза, как в данном случае, ионы из раствора на аноде не окисляются.Медь окисляется на аноде (черновая медная пластина) с переходом ионов меди в раствор: Cu 0 -2e=Cu 2+ ,а на катоде выделяется чистая медь из раствора: Cu 2+ + 2e= Cu 0 . Суммарного уравнения электролиза, как правило, в этом случае не пишут.

Пример 3.Написать уравнения процессов, происходящих при электролизе водного раствора сульфата натрия (анод платиновый).

Решение.Стандартный электродный потенциал системы

Na + + е — → Na 0 (-2,71 В)

значительно отрицательнее потенциала водородного электрода в нейтральной водной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода:

а ионы Na + , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство)

На аноде будет происходить электрохимическое окисление воды, сопровождающееся выделением кислорода

поскольку отвечающий этой системе стандартный электродный потенциал (1,23В) значительно ниже, чем стандартный электродный потенциал (2,01 В), характеризующий систему

Ионы SО4 2- , движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.

Умножая уравнение катодного процесса на два и складывая с уравнением анодного процесса, получаем суммарное уравнение процесса:

Приняв во внимание, что одновременно происходит накопление ионов Na + в катодном пространстве и ионов SО4 2- в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

20 + 2 Na24 → 2Н2↑ + 4 Na + + 4ОН — + О2 + 4 Н + + 2SО4 2-

Таким образом, одновременно с выделением водорода и кислорода образуется гидроксид натрия (в катодном пространстве) и серная кислота (в анодном пространстве)

Количественно электролиз описывается двумя законами Фарадея:

1. Масса выделяющегося на электроде вещества пропорциональна количеству прошедшего электричества:

,

где Q – количество электричества (заряд); I – сила тока; t время протекания тока.

Если Q=1Кл, то К=m. Масса вещества, выделяющаяся при прохождении 1 Кл электричества, называется электрохимическим эквивалентом.

2. Для выделения на электроде одного эквивалента любого вещества необходимо затратить одно и то же количество электричества, равное постоянной Фарадея F=96483 Кл/моль.

Обобщенное выражение законов Фарадея:

, (11.1)

где m –масса вещества, г; mЭ– эквивалентная масса вещества, г/моль; I сила тока, А; t – продолжительность электролиза, с.

Пример 4.Какая масса меди выделится на катоде при электролизе раствора CuSO4 в течение 1 ч, если сила тока равна 4 А?

Решение.Воспользуемся формулой (11.1). Эквивалентная масса mЭ меди в CuSO4 равна 63,54:2=31,77 г/моль; t=60*60=3600 c.

Подставив в формулу численные значения, получим

Пример 5.Вычислите эквивалентную массу металла, зная, что при электролизе раствора хлорида этого металла затрачено 38600 Кл электричества и на катоде выделилось 11,742 г металла.

Решение. Из формулы (11.1) имеем

,

где m=11,742 г, I×t=Q=38600 Кл.

Впервые в мире гальванический элемент был разработан Луиджи Гальвани. Об его истории читайте в этой статье. По сути это временный источник электрического тока, который формируется за счет протекания химической реакции. Поток электронов формируется за счет взаимодействия между двумя разноименными металлами. В результате этого химическая энергия преобразуется в электрическую, которую уже можно использовать в повседневной жизни.

Концентрационный гальванический элемент – это источник тока в состав которого входит 2 однотипных металлических электродов помещенных в смесь солей этого металла в различных концентрациях.

Кроме Гальвани созданием эффективной батареи занимался Даниэль Якоби. Он немного видоизменил свой источник энергии. В его состав входит пластина, выполненная из меди, помещенная в CuSO4 и пластина из цинка погруженная в ZnSO4. Чтобы не дать им воздействовать прямо друг на друга между ними установлена пористая стенка. Ниже представлена схема гальванического элемента Даниэля Якоби.

Цинк и медь обладают разной активностью и поэтому их заряд по величине будет различным. В итоге уровень электродов также не однозначен. Это позволяет им перемещаться и производить электрический или гальванический ток. Он начинает протекать, когда любой человек или изобретатель тока хранящего аппарата присоединяет нагрузку. В качестве нее может быть лампочка, приемник, компьютерная мышка и другие электрические устройства.

Читайте также:  Адресная светодиодная лента rgb

Схема гальванического элемента

Под схемой подразумевают его состав и устройство. Он может быть выполнен из нескольких химических элементов с применением вспомогательных приспособлений. Ниже об строение гальванического элемента будет рассказано кратко. Подробнее о нем читайте в этой статье!

Устройство гальванического элемента

Самый простой энергетический накопитель состоит из:

  1. Стрежня из угля.
  2. Двух разнородных металлов.
  3. Электролита.
  4. Смола или пластик.
  5. Изолятора.

Как видно из этой схемы в составе строения гальванического элемента имеется отрицательный и положительный электрод. Они могут быть выполнены из меди, цинка и других металлов. Имеют название по типу медно цинковые. Иногда их называют сухие батарейки.

Обозначение гальванического элемента на схеме выполнено в виде двух вертикальных прямых приближенных друг к другу на небольшом расстоянии. Одна из которых будет меньше. По краям возле каждой такой линии имеются знаки, обозначающие полярность. У длинной линии ставят плюс, а у короткой минус. Рядом может располагаться вольтаж. Это означает что схема в которой используется батарейка работает только от этого напряжения.

Принцип работы гальванического элемента

Работа гальванического элемента осуществляется за счет движения электронов от одного металлического контакта к другому. Идет некое химическое превращение. Подробнее про термодинамику гальванического элемента и образование гальванического электричества читайте здесь.

Ответы на часто задаваемые вопросы

Гальванический/ая Разъяснение
Батарея Источник энергии работающий за счет процессов, происходящих в ограниченном миниатюрном пространстве. В частности, энергия появляется, когда идет химическая реакция.
Элемент Вольта или Вольтов столб Это энергетический элемент впервые созданный ученым по фамилии Вольт.
Процесс Взаимодействие между химическими элементами в результате которого образуется электрический ток.
Разряд Это завершение протекания химической реакции. То есть взаимодействия между веществами не будет.Гальванический разряд есть в игре Warframe. По сути это модификация, которая находится в большом дефиците. Ее используют для холодного оружия. Полярность V2.
Гальванический контакт Это контакт между электродами и раствором.
Эффект Появление разности между двумя контактами из 2-х типов металлов. Величина зависит от температуры и химии проводников. По сути это первый закон Вольта.
Соединение/связь/цепь Объединение 2-х и более участков электрической цепи с источником тока.
Гальванический заряд Наполнение батареи энергией.

Гальваника – это протекание химических процессов с использование электрического тока. В ходе реакция сокращается количество растворенных катионов металла до такой степени что в конечном итоге они создают единое покрытие на металлическом электроде. В итоге предмет получается более прочным, исчезают небольшие вмятины и его вид становится более привлекательным.

Типы гальванических элементов

Выделяют ряд батареек определенных типов.

Таблица гальванических элементов

Тип Напряжение Основные плюсы
Литиевые 3 V Большая емкость, высокая сила тока.
Солевые батарейки или угольно – цинковые 1.5 в Самые дешевые.
Никельоксигидроксильные NiOOH 1.6 вольт Повышенный ток. Большая емкость.
Щелочные или алкалиновые 1.6 V Большая сила тока. Хороший объем.

Более детальнее эта тема раскрыта в статье виды батареек!

Назначение гальванического элемента

Он предназначен для запуска электрической технике. Это могут быть:

  1. Часы.
  2. Пульты.
  3. Фонарики.
  4. Медицинское оборудование.
  5. Ноутбуки.
  6. Игрушки.
  7. Брелки.
  8. Телефоны.
  9. Лазерные указки.
  10. Калькуляторы.

И им подобные окружающие нас вещи.

Гальванический элемент в домашних условиях

Простой источник тока можно сделать и своими руками. Для этого нам потребуется следующий инвентарь:

  1. Пластиковый стакан.
  2. Электролит. В качестве него можно взять соленый раствор, газировку или лимонную кислоту, разведенную в воде.
  3. Пластинки двух разных металлов. К примеру алюминий и медь.
  4. Провода

Процесс изготовления

Берем пластиковый стаканчик и наливаем в него электролит. Не следует наполнять стакан до самых краев. Лучше на 1-2 сантиметра не долить. К металлическим пластинам прикрепите проводники. Далее установите на края нашей емкости пластины из меди и алюминия. Они должны располагаться параллельно друг к другу. Когда все готова можно замерить с помощью вольтметра напряжение.

Подключите прибор и прикоснитесь щупами к контактам нашего источника тока. Держите и не отрывайте их пока на дисплее не высветится напряжение. Обычно оно составляет 0.5-0.7 вольт. Такие цифры показываются в зависимости от электролита. Точнее используемого вещества в его качестве.

Более детально создание батареи своими руками описано в этой статье.

Таким образом изготавливается самодельный гальванический элемент.

Ссылка на основную публикацию
Adblock detector