Баланс моста постоянного тока

Баланс моста постоянного тока

Никакую книгу по электрическим измерениям нельзя было бы назвать полной без раздела о мостовых схемах. Эти гениальные схемы используют индикатор баланса для сравнения двух напряжений, точно так же как и лабораторные весы сравнивают две массы и указывают на то, что они равны. В отличие от "потенциометрических" схем, используемых для простого измерения неизвестного напряжения, мостовые схемы могут использоваться для измерения всех видов электрических величин, в том числе и сопротивлений.

Стандартная мостовая схема, часто называемая мостом Уитстона (Wheatstone bridge), изображена на рисунке 1.

Когда напряжение между точкой 1 и минусом батареи равно напряжению между точкой 2 и отрицательным выводом батареи, то индикатор баланса будет показывать ноль, и про такой мост говорят что он "сбалансирован". Состояние баланса моста полностью зависит от отношений Ra/Rb и R1/R2, и оно не зависит от напряжения питания. Для измерения сопротивлений с помощью моста Уитстона на место резисторов Ra или Rb устанавливается неизвестное сопротивление, в то время как остальные три резистора являются прецизионными и их номинал известен. Каждый из этих трёх резисторов может быть заменён сопротивлением другой величины или их номиналы могут быть скорректированы, что бы мост сбалансировался, и когда это произойдёт то величина сопротивления неизвестного резистора может быть определена из соотношения величин известных сопротивлений.

Для этого необходимо, что бы измерительная система имела набор переменных резисторов с точно известными значениями, которые могут служить эталонными стандартами. Например, если мост настроен на измерение сопротивления Rx (рисунок 2), то мы должны знать точное значение остальных трёх сопротивлений при сбалансированном мосте, что бы определить величину сопротивления Rx:

Каждое из четырёх сопротивлений в мостовой схеме называют плечом. Резистор, последовательно соединённый с неизвестным сопротивлением, Rx обычно называют реостатом моста (это будет сопротивление Ra на рисунке 2), а другие два сопротивления называют плечами отношений моста.

Точные и стабильные образцовые сопротивления к счастью, не сложно изготовить. В действительности они были одними из первых электрических "Стандартных" устройств, изготовленных в научных целях. На рисунке 3 приведена фотография старинного блока стандартных сопротивлений:

Рис. 3. Магазин образцовых сопротивлений

Стандарт сопротивлений, изображённый на рисунке 3, является переменным с дискретным шагом изменения сопротивления: величина сопротивления между клеммами может изменяться в зависимости от количества и положения медных вставок, вставленных в разъёмы.

Мосты Уитстона считаются превосходным средством измерения сопротивления среди схем различных омметров. Но в отличие от всех этих схем, являющихся нелинейными (и имеющих нелинейные шкалы), и связанные с этим погрешности измерений, мостовая схема является линейной (математика описания её работы основана на простых отношениях и пропорциях) и довольно точной.

Имея стандартные сопротивления достаточной точности и нуль-детектор с необходимой чувствительностью, достижимая точность измерения сопротивления может быть не хуже +-0,05% при использовании моста Уитстона. Это метод измерения сопротивления предпочитают использовать в калибровочных лабораториях из-за его высокой точности.

Существует много вариаций основной схемы моста Уитстона. Большинство мостов постоянного тока используются для измерения сопротивления, в то время как мосты переменного тока могут быть использованы для измерения различных электрических величин, таких как индуктивность, ёмкость и частота.

Интересным вариантом моста Уитстона является двойной мост Кельвина, используемый для измерения очень малых сопротивлений (обычно менее 1/10 Ома), его схема изображена на рисунке 4:

Рис. 4. Двойной мост Кельвина.
Ra и Rx являются низкоомными сопротивлениями.

Низкоомные резисторы на рисунке изображены толстой линией, так же как и проводники, соединяющие их с источником напряжения, обеспечивающим сильный ток. Принцип работы этого измерительного моста причудливой конфигурации, пожалуй, лучше всего понять, если начать объяснение принципа его работы со стандартного моста Уитстона, настроенного для измерения низкого сопротивления, этот мост развивался шаг за шагом до его нынешнего состояния в попытке преодолеть некоторые проблемы, возникшие в мосте Уитстона стандартной конфигурации.

Если бы мы использовали стандартный мост Уитстона для измерения небольших сопротивлений, то его схема бы выглядела примерно так (рисунок 5):

Когда нуль-детектор указывает нулевое напряжение, мы знаем, что мост сбалансирован и что соотношение Ra/Rx и RM/RN математически равны друг другу. Зная значения Ra, RM, and RN поэтому мы имеем все необходимые данные, чтобы найти величину Rx. Почти.

Имеется проблема в том, что соединения и соединительные провода между Ra и Rx обладают неким сопротивлением, и эти паразитные сопротивления могут быть существенными по сравнению с низким сопротивлением Ra и Rx. Эти паразитные сопротивления понизят реальное напряжение, учитывая большой ток, протекающий через них, и таким образом будут влиять на показания детектора нуля и на баланс моста (Рисунок 6):

Рис. 6.
Паразитное напряжение Eпров. ухудшает точность измерения Rx.

Так как мы не хотим измерять сопротивление этих паразитных проводников и сопротивление соединений, а нас интересует только измерение сопротивления Rx, то надо найти такой способ включения нуль-детектора, что бы на его показания не влияли падения напряжений, протекающего через эти сопротивления. Если мы присоединим нуль-детектор и плечи отношений RM/RN напрямую к выводам Ra и Rx, то это приведёт нас к такой реализации измерительного моста (Рисунок 7):

Рис. 7.
Теперь только два паразитных падения напряжения Eпров. являются частями цепи нуль-детектора.

Теперь два крайних падения напряжения Eпров. не оказывают воздействия на нуль-детектор и не влияют на точность измерений сопротивления Rx. Но два оставшихся падения напряжений Eпров. являются проблемой, так как проводник, соединяющий нижний по схеме вывод Ra и верхний по схеме вывод Rx теперь шунтирует оба падения напряжения и по нему будет течь существенный ток, который создаст на этом проводнике своё падение напряжения.

Зная, что левая часть нуль-детектора должна быть подключена к двум крайним выводам сопротивлений Ra и Rx, что бы не вносить ошибки, связанные с паразитными падениями напряжения Eпров. в цепи нуль-детектора, и что любой прямой провод, соединяющий выводы этих сопротивлений Ra и Rx будет сам нести значительный ток и создавать ещё большее паразитное падение напряжения, то единственным способом преодолеть эту проблему является создание соединения, имеющее существенное сопротивление, между нижнем по схеме выводом Ra и верхнем по схеме выводом Rx (Рисунок 8):

Читайте также:  Бурлящие шарики для ванны своими руками

Справится с паразитными падениями напряжений между выводами сопротивлений Ra Rx можно путём изменения сопротивления двух новых резисторов таким образом, что бы отношение их величин было бы таким же, как и отношение величин сопротивлений в плече отношений, находящихся по схеме с правой стороны от нуль-детектора. Вот почему эти резисторы были помечены Rm и Rn в оригинальной схеме двойного моста Кельвина: для обозначения их соразмерности с сопротивлениями RM и RN (Рисунок 9):

Рис. 9. Двойной мост Кельвина
Ra и Rx являются низкоомными сопротивлениями.

При отношении Rm/Rn равном отношению RM/RN, резистор в плече реостата Ra регулируется до тех пор, пока нуль-индикатор не покажет, что мост сбалансирован, и тогда можно будет сказать, что отношение Ra/Rx равно отношению RM/RN, или просто найти Rx из следующего уравнения:

Полное уравнение баланса двойного моста Кельвина выглядит следующим образом (Rпров. — это сопротивление толстых соединительных проводов между низкоомным образцовым сопротивлением Ra и испытуемым сопротивлением Rx):

До тех пор пока соотношение между RM и RN равно отношению между Rm и Rn, уравнение баланса будет не сложнее чем у обычного моста Уитстона, при Rx/Ra равном RN/RM, так как последнее выражение в уравнении будет равно нулю, так что будет отсутствовать влияние всех сопротивлений, кроме Rx, Ra, RM, и RN.

Во многих двойных мостовых схемах Кельвина RM=Rm и RN=Rn. Однако чем меньше значения сопротивлений Rm и Rn, тем более чувствительным должен быть нуль-детектор, потому что там будет меньше последовательное сопротивление. Увеличение чувствительности детектора является полезным, так как оно позволит обнаруживать слабые дисбалансы, и таким образом мост можно будет сбалансировать с большой точностью. Таким образом некоторые высокоточные двойные мосты Кельвина используют сопротивления Rm и Rn со значениями в 100 раз меньше, чем значения сопротивлений RM и RN в другом плече. К сожалению, однако, чем ниже значения сопротивлений Rm и Rn, тем больший ток по ним будет течь, что увеличит влияние любого сопротивления в точке подключения Rm и Rn к Ra и Rx. Как вы можете видеть, высокая точность инструмента требует, чтобы учитывались все ошибки различных факторов, и часто лучшее, что может быть достигнуто является компромиссом минимизации двух или более различных видов ошибок.

  • ИТОГ:
  • Мостовые схемы используют чувствительный индикатор нуля для сравнения двух напряжений на их равенство.
  • Мост Уитстона (Wheatstone br >

Аналоговые приборы компенсационного типа

Для измерений различных величин находят применение изме­рительные приборы — мосты и компенсаторы, которые строятся на основе метода сравнения с мерой.

Мосты широко используют для измерения сопротивления, индуктивности, емкости, добротности и угла потерь. На основе мостовых схем выпускают приборы для измерения неэлектрических величин (температуры, перемещений и др.) и различные устройства автоматики. Широкое применение мостов объясняется возможностью получения высокой точности результатов измерений, высокой чувствительности и возможностью измерения различных величин.

В зависимости от характера сопротивлений плеч, образующих мост, и рода тока, питающего мост, выделяют мосты постоянного тока и мосты переменного тока. В зависимости от вида схемы (числа плеч) мосты постоянного тока бывают четырехплечие (одинарные) и шестиплечие (двойные). Мосты выпускаются с ручным и автоматическим уравновешиванием.

Для измерений напряжений и ЭДС постоянного и переменного тока применяют компенсаторы постояного и переменного тока. Они также применяются для измерения других величин при использовании измерительных преобразователей и косвенного способа измерений.

Компенсаторы дают возможность получать результаты с высокой точностью, они обладают высокой чувствительностью.

Приборостроительная промышленность выпускает компенсаторы как с ручным, так и с автоматическим уравновешиванием.

Мост постоянного тока содержит четыре резистора, соединенных в кольцевой замкнутый контур. Резисторы Rl, R2, R3 и R4 этого контура называются плечами моста, а точки соединения соседних плеч — вершинами моста. Цепи, соединяющие противоположные вершины, называют диагоналями. Одна из диагоналей (3-4) содержит источник питания GB, а другая (1-2) — указатель равновесия PG.

Мост называется уравновешенным, если разность потенциалов между точками 1 и 2 равна нулю, т.е. напряжение на диагонали, содержащей индикатор нуля, отсутствует и ток через индикатор равен нулю.

Рис.4.23. Схема четырехплечего (одинарного) моста постоянного тока

Соотношение между сопротивлениями плеч, при котором мост урав­новешен, называется условием равновесия моста. Это условие можно получить, используя законы Кирхгофа для расчета мостовой схемы. Например, для одинарного моста постоянного тока зависимость проте­кающего через индикатор нуля (гальванометр) PG тока IG от со­противлений плеч, сопротивления гальванометра RG и напряжения питания U имеет вид

Это и есть условие равновесия одинарного моста постоянного тока, которое можно сформулировать следующим образом: для того чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч должны быть равны. Если сопротивление одного из плеч неизвест­но (например, R1 = Rx), то условие равновесия будет иметь вид

(4.39)

Таким образом, измерение при помощи одинарного моста можно рассматривать как сравнение неизвестного сопротивления Rx с образцовым сопротивлением R2 при сохранении неизменным отношения R3/R4. По этой причине плечо R2 называют плечом сравнения, плечи R3 и R4 плечами отношения.

Если в предварительно уравновешенном мосте первое плечо получает приращение ΔR1 то в диагонали моста возникает ток, который в первом приближении (при условии ΔR1 6 Ом). В широкодиапазонных одинарных мостах плечо сравнения (R2) изготавливают в виде многодекадного магазина сопротивлений. Плечи отношений (R3, R4) выполняют в виде штепсельных магазинов сопротивления, которые могут иметь значения 10, 100, 1000 и 10 000 Ом.

При измерении сопротивлений величиной менее 10 Ом на результат измерения оказывают существенное влияние сопротивление контактов и соединительных проводов. Уменьшить это влияние можно следующими способами:

1. использовать 4-х зажимное подключение измеряемого резистора в схеме одинарного (четырехплечего) моста.

2. использование двойного (шестиплечевого) моста.

Конструктивно современные мосты обычно выполняют в металлическом корпусе, на панели которого размещаются ручки магазина сопротивлений (плечо сравнения), переключатели плеч отношения, зажимы для подключения измеряемого объекта, наружного гальванометра, источника питания. Некоторые мосты выпускаются со встроенными гальванометрами.

Для измерения сопротивлений в широком диапазоне промыш­ленность выпускает одинарные и одинарно-двойные мосты. Например, одинарно-двойной мост Р3009 предназначен для измерений на постоянном токе сопротивлений от 10 -8 до 10 10 Ом. Основная допускаемая погрешность моста определяется классом точности, который для этого моста гарантируется от k = 2 до k = 0,02 в зависимости от поддиапазона измерений.

Читайте также:  Акт на монтаж системы отопления

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9579 — | 7369 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

МОСТОВОЙ МЕТОД ИЗМЕРЕНИЯ

Мостовые схемы широко применяются в лабораторной практике для измерения электрических характеристик (например, R, C, L) методом сравнения с аналогичными величинами, значения которых известны. Такой метод обладает многими достоинствами, в частности, можно достичь большой точности измерений без использования сложных и дорогостоящих приборов.

Простейшим примером мостовой схемы может служить «мост Уитстона» – схема, впервые разработанная в 1844 г. Чарльзом Уитстоном (Charles Wheatstone, 1802-75) для измерения сопротивлений (рис. 24).

Рассмотрим принцип действия мостовой схемы на этом простом примере (рис. 24). Мост Уитстона включает в себя четыре резистора (R1, R2, R3, R4) – четыре плеча моста, соединенные четырехугольником, источник тока (Е), включенный в одну диагональ моста, и гальванометр (Г), включенный в другую диагональ. Одно из сопротивлений неизвестно, три другие известны и хотя бы одно из них может изменяться. Варьируя величину регулируемого сопротивления, можно добиться такого состояния схемы, при котором разность потенциалов между точками С и D равна 0. Индикатором служит гальванометр, показывающий в этом случае отсутствие тока в ветви CD. В таком состоянии мост называется сбалансированным. Очевидно, что в этом случае

Решив эту систему уравнений, получаем:

R1·R3 = R4·R2 или .

То есть если мост сбалансирован, то между сопротивлениями существует определенное соотношение и, следовательно, неизвестное сопротивление можно выразить через три другие.

Мосты переменного тока

Мостовые схемы можно применять и для измерения таких величин, как емкости (C) и индуктивности (L). Однако для этих целей уже необходимо использовать мосты переменного тока.

По аналогии с мостом Уитстона изобразим схему моста переменного тока (рис. 25).

Пусть в мост переменного тока входят четыре элемента (Z1, Z2, Z3, Z4), один из которых следует определить, а также источник питания (E) и измерительный прибор (V). При отсутствии тока в измерительном приборе мост будет сбалансирован. Так же как для моста Уитстона, в этом случае между импедансами (полными сопротивлениями) плеч моста имеет место соотношение, которое позволяет вычислить искомый импеданс одного из плеч по известным импедансам других плеч. Найдем это соотношение.

Баланс моста достигается только в том случае, когда потенциалы в точках C и D равны друг другу в любой момент времени. Это имеет место при равенстве падений напряжения (U1 и U4) на Z1 и Z4 как по амплитуде, так и по фазе. При балансе имеем

I1 = I2 = , I3 = I4 = .

U1 = I1·Z1 = , U4 = I4·Z4 = .

Так как U1 = U4, получаем соотношение для импедансов:

Z1·Z3 = Z4·Z2 или .

Значения величин полных сопротивлений (импедансов) при математических действиях с ними обычно выражают комплексными числами 1 :

где R – активная составляющая полного сопротивления Z, X – реактивная составляющая полного сопротивления Z.

Тогда уравнение (51) примет вид:

Выполнение такого равенства возможно только при одновременном выполнении двух условий – равенстве действительных и мнимых частей, т.е. оно преобразуется в систему из двух уравнений:

Отсюда вытекает необходимость выполнения одновременно двух условий. Физический смысл этого требования заключается в том, что для баланса требуется совпадение переменных потенциалов в точках С и D по фазе и по амплитуде. Следовательно, для балансировки такого моста необходимо в общем случае регулировать как минимум два элемента. Также видно, что если импеданс искомого плеча включает в себя реактивную составляющую (C или L), то, по крайней мере, еще одно из плеч тоже должно включать таковую.

При работе с мостами следует иметь в виду, что принципиальная схема является идеализированной. Элементы схемы связаны между собой не только изображенными проводами, но и паразитными емкостями, а иногда и паразитными взаимоиндуктивностями; кроме того, реальные конденсаторы часто обладают «утечкой», т.е. их активное сопротивление не равно нулю. Эти причины, а также неидеальность приборов и т.п., приводят к тому, что на практике обычно невозможно добиться идеального баланса. При работе добиваются не отсутствия тока в ветви CD, а его минимума.

Лабораторная работа 44

ИЗМЕРЕНИЕ ЕМКОСТЕЙ КОНДЕНСАТОРОВ С ПОМОЩЬЮ МОСТА ПЕРЕМЕННОГО ТОКА

Измерение величин нескольких емкостей.

Расчет емкостных сопротивлений.

Физическое обоснование эксперимента

Прежде чем приступать к выполнению работы, необходимо ознакомиться в данном учебном пособии с главой «Мостовой метод измерений».

Метод исследования и описание установки

Экспериментальная установка представляет собой мостовую схему, изображенную на рис. 44.1. Здесь R3 и R2 – магазины сопротивлений. С – магазин емкостей, СX – конденсатор, емкость которого требуется определить. В качестве источника питания используется звуковой генератор ГЗ-34. В другую диагональ моста включен милливольтметр В3-39.

Как известно, конденсаторы обладают емкостным сопротивлением , где C – емкость,  = 2·f – круговая частота (f – частота переменного тока). Полные сопротивления плеч такого моста представляют собой соответственно:

Z1 = X1 =

Z4 = X4 =

Запишем применительно к такой схеме систему уравнений (53) и (54), которая должна выполняться при балансе моста. Видно, что уравнение (53) выполняется автоматически, так как R1 = 0, X2 = 0, X3 = 0, R4= 0. А уравнение (54) принимает вид

Подставив в него значения Х1 и Х2, получаем

.

Таким образом, если мост сбалансирован, то Сx можно определить, зная величины С, R3 и R2.

Порядок выполнения работы

Собрать электрическую схему в соответствии с рис. 44.1, включив в нее один из исследуемых конденсаторов.

Установить на генераторе частоту 1000 Гц.

Установить на магазинах сопротивлений R3 и R2 по 500Ом.

Установить на магазине емкостей С = 0.

Установить предел измерений вольтметра 10 В.

Проверить электрическую схему.

Включить генератор и вольтметр (после проверки схемы лаборантом), дать приборам прогреться.

Изменяя величину емкости магазина емкостей С, добиться минимального показания вольтметра. При этом, так как В3-39 – прибор многопредельный, то, по мере уменьшения его показаний, следует увеличивать его чувствительность (уменьшать пределы измерений).

Повторить балансировку, изменяя сопротивления R3 и R2 или частоту (по указанию преподавателя).

Читайте также:  Вектор магнитной индукции однородного магнитного поля

Провести аналогичные измерения для других неизвестных конденсаторов. Рассчитать их емкостные сопротивления.

В данной работе требуется определить, также, емкости и емкостные сопротивления некоторых (по указанию преподавателя) комбинаций конденсаторов при их параллельном и последовательном соединениях. Полученные значения сравнить со значениями, рассчитанными по формулам для данных комбинаций.

Результаты всех измерений (желательно в виде таблицы).

Расчет значений емкостей и емкостных сопротивлений всех исследованных конденсаторов и их комбинаций.

Расчет теоретических значений емкостей исследованных комбинаций конденсаторов. Сравнение теоретических результатов с экспериментальными.

Расчеты погрешности измерений двумя способами: на основании класса точности приборов и, где возможно, учитывая разброс результатов измерений при варьировании сопротивлений.

Окончательные результаты с указанием погрешностей.

От каких параметров зависит емкостное сопротивление?

В чем принципиальное различие мостов постоянного и переменного тока?

Каков сдвиг по фазе на емкости (индуктивности) между током и напряжением?

В каком случае общая емкость (емкостное сопротивление) больше: при параллельном или при последовательном включении конденсаторов?

Лабораторная работа 45

ИЗМЕРЕНИЕ ИНДУКТИВНОСТЕЙ КАТУШЕК С ПОМОЩЬЮ МОСТА ПЕРЕМЕННОГО ТОКА

Измерение величины индуктивностей нескольких катушек.

Расчет их активных и реактивных сопротивлений.

Физическое обоснование эксперимента

Прежде чем приступать к выполнению работы, необходимо ознакомиться в данном учебном пособии с главой «Мостовой метод измерений».

Метод исследования и описание установки

Экспериментальная установка представляет собой мостовую схему, изображенную на рис.45.1. Здесь R1, R2, R3 и R4 – магазины сопротивлений, L – эталонная катушка с известной индуктивностью L и известным активным сопротивлением r, LX – исследуемый соленоид, для которого требуется определить индуктивность LX и активное сопротивление rX. В качестве источника питания в одну из диагоналей моста включается либо звуковой генератор Гз, либо источник постоянного тока Е (переключение производится ключом К2). Ключ К служит для замыкания цепи гальванометра при измерении на постоянном токе.

В другую диагональ моста (CD) могут быть включены либо гальванометр Г (в случае измерений на постоянном токе), либо ламповый милливольтметр В3-39 (в случае измерений на переменном токе). Переключение производится ключом К1.

Как известно, сопротивление соленоида имеет активную и реактивную составляющие, и, в общем случае, равно:

,

где ХL = L – индуктивное сопротивление,  = 2f – круговая частота (f – частота переменного тока).

Или, используя способ записи с помощью комплексных чисел:

Полные сопротивления плеч такого моста представляют собой соответственно:

Запишем, применительно к такой схеме, систему уравнений (53) и (54), которая должна выполняться при балансе моста. Так как X4 = 0 и X3 = 0, уравнения (53) и (54) принимают вид

Перепишем получившуюся систему уравнений в более наглядном виде и проанализируем ее 2 :

,

.

Если в плечи моста, содержащие индуктивности, не включать дополнительные сопротивления (R1 = R2 = 0), то одновременное выполнение этих двух равенств в общем случае невозможно. Такое совпадение означало бы, что активные сопротивления катушек и их индуктивности находятся в одинаковом соотношении, что весьма маловероятно, так как активное сопротивление катушки и ее индуктивность определяются различными физическими причинами. Для балансировки рассматриваемого моста необходимо подключать дополнительные активные сопротивление R1 и R2 (или хотя бы одно из них). При этом выбор того плеча, в которое надо включать сопротивление, определяется соотношением между включенными в мост индуктивностями и их активными сопротивлениями.

Выполнение уравнений (45.3) и (45.4) соответствует балансу моста, т.е. отсутствию разности потенциалов между точками C и D в любой момент времени. Анализ уравнений показывает, что для достижения этого необходимо регулировать, как минимум, два параметра R1 и/или R2 и отношение R4/R3. Практически это довольно сложно в условиях, когда в плечах моста уже есть неизменные сопротивления (r + i··L) и (rX + i··LX).

Кроме того, в диагонали моста CD возможно получение минимумов напряжения и не соответствующих состоянию баланса в случае, когда потенциалы в точках C и D не совпадают по фазе. Дополнительно затрудняет измерения то обстоятельство, что, и при условии выполнения уравнений (45.3) и (45.4) практически не достигается полное отсутствие тока, а только более «глубокий» минимум. Вспомогательное уравновешивание моста на постоянном токе позволяет проверить достижение состояния истинного баланса, а кроме того, упрощает поиски «истинного», наиболее глубокого минимума.

Отсутствие тока в диагонали CD при балансе на постоянном токе свидетельствует о выполнении уравнения (45.3). Если минимум сигнала в CD на переменном токе получен при том же отношении R4/R3, что и на постоянном токе, то это будет означать, что оба уравнения выполняются и баланс достигнут.

Используя полученные значения сопротивлений R1, R2, R3 и R4, можно из уравнения (45.3) вычислить значение активного сопротивления исследуемой катушки, а из уравнения (45.4) – значение ее индуктивности.

Порядок выполнения работы и обработка результатов измерений

Собрать электрическую схему в соответствии с рис. 45.1, включив в нее один из исследуемых соленоидов. На генераторе уже установлена частота, равная 1000 Гц.

Установить предел измерений вольтметра 30 В.

Перевести ключи К1 и К2 в положение «переменный ток». Включить генератор и вольтметр (после проверки схемы), дать приборам прогреться.

Провести первичную балансировку на переменном токе, т.е. изменяя величины сопротивлений R3 и R4, добиться минимального показания вольтметра. При этом, так как В3-39 – прибор многопредельный, то, по мере уменьшения его показаний, следует увеличивать его чувствительность (уменьшать пределы измерений). Записать получившиеся значения R3 и R4.

Переключить схему на постоянный ток (ключи К1 и К2 в положение «постоянный ток»). Изменяя R3 и R4, добиться баланса (отсутствия тока в гальванометре) при постоянном токе. При измерении замыкать ключ К. Вспомним рабочую систему уравнений, которые должны выполняться одновременно: (R1 + rX)/(R2 + r) = R4/R3 и LX/L = R4/R3. Первое из этих уравнений выполняется и при балансе на постоянном токе, так как в него входят только чисто активные сопротивления. Сравним получившиеся в эксперименте отношения (R4/R3)пост и (R4/R3)перем. Чтобы оба уравнения выполнялись одновременно, необходимо изменить R1 или R2, а так как и R1, и R2 пока равны нулю, необходимо сделать одно из них отличным от нуля. В зависимости от соотношения между (R4/R3)пост и (R4/R3)перем, надо вводить или R1, или R2. Из системы уравнений видно, что для того, чтобы оба уравнения выполнялись при одном и том же отношении R4/R3, надо:

Ссылка на основную публикацию
Бак из старой стиральной машины
Что обычно делают с отжившей свой век бытовой техникой? Вариантов здесь может быть множество. Кто-то просто отвозит старый агрегат к...
Антенна вай фай для смартфона
Всем привет!Приобрел недавно материнку от бюджетного смартфона с 4G для использования как Wi-Fi роутера, но столкнулся с очень слабым сигналом...
Антенна восьмёрка для цифрового телевидения
Сегодня эфирное телевидение наиболее распространено среди пользователей. Оно работает путем улавливания излучения от вещателя на приемник. В силу ряда факторов...
Бак разрыва струи канализации
Нормы СанПиН не допускают попадания нечистот и патогенных микроорганизмов из канализации на продукты питания и посуду при их мытье. Прежде...
Adblock detector