Асинхронный тяговый двигатель характеристики

Асинхронный тяговый двигатель характеристики


Наши дополнительные сервисы и сайты:


e-mail: office@matrixplus.ru
tender@matrixplus.ru
icq: 613603564
skype: matrixplus2012
телефон +79173107414
+79173107418

г. С аратов

Статистика

Бесколлекторные тяговые двигатели

Существенно повысить силу тяги и скорость движения невозможно, не увеличив мощность тяговых двигателей электровозов. Но дальнейшее повышение их мощности осуществлять все трудней и трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр — расстоянием между осью колесной пары и валом двигателя — централью Ц (см. рис. 3). До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали, применяя более теплостойкие изоляционные материалы, усиливая охлаждение, увеличивая число пар полюсов, применяя компенсационную обмотку, выбирая оптимальное напряжение для тяговых двигателей электровозов переменного тока.

С повышением мощности двигателей все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности коллекторных тяговых двигателей не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями. На протяжении всей истории создания и совершенствования электровозов не раз пытались использовать на них самый простой и дешевый асинхронный двигатель. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее с этой целью электромашинные преобразователи были тяжелыми и громоздкими. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного тягового двигателя, как отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 126). Различают асинхронные двигатели с короткозамк-нутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка представляет собой так называемое .

В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют (рис. 126, а). При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, наводит в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Рис. 126. Схема (а), статор (б) и ротор (в) асинхронного двигателя

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1 — 3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю, для того, чтобы получить тяговую характеристику, примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового

трансформатора с помощью главного контроллера Г К (рис. 127) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Открывая и закрывая тиристоры инвертора в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза питающего напряжения сдвинута относительно другой на 120° эл., как показано на рис. 128. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями тиристоры инвертора создают напряжение ступенчатой формы в каждой фазе. Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих тиристоров.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы питающего напряжения.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80а на базе электровоза ВЛ80К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раза больше, чем коллекторного двигателя электровоза ВЛ80К. Один из вариантов (12-осный, мощность часового режима 11400 кВт) электровоза с асинхронными тяговыми двигателями получил обозначение ВЛ86Ф. Он разработан в содружестве с финской фирмой «Стрёмберг».

Электровозы с вентильными синхронными двигателями. В качестве бесколлекторных тяговых двигателей на электровозе можно использовать и синхронные двигатели со статическими (вентильными) преобразователями — так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе — обмотка возбуждения постоянного тока (рис. 129). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в ; начала их подключены к преобразователю — инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямителя В, подключенного к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры VS1 и VS5 инвертора, ток от выпрямителя В пройдет через тиристор VS1, обмотки статора I и //, тиристор KS5, обмотку возбуждения ОВ и возвратится в выпрямитель. При указанном стрелками направлении тока в обмотках I, II и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Рис. 127. Структурная схема электровоза с асинхронными двигателями

Рис. 128. Диаграмма фазных напряжений асинхронного тягового двигателя

Рис. 129. Принципиальная схема вентильного двигателя

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, у которой коллектор заменен системой силовых управляемых вентилей инверторной установки. В отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь — неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами — до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В (максимальное допустимое 37-42 В). Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Читайте также:  Габариты стиральной машины под раковину

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки.

Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямителя регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На опытных электровозах ВЛ80В схема выпрямления и преобразования тока несколько отличается от изображенной на рис. 129. На рис. 129 показаны отдельно выпрямитель В и инвертор И, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ80В выпрямитель и инвертор совмещены.

Средства для мойки


форсунок в ультразвуковых ваннах и на стендах

Дезинфицирующие средства

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Существующие электрические машины способны выполнять множество разных функций. Они преобразуют механическую энергию в электрический ток и наоборот. Подавляющее большинство электрических устройств работают по простой схеме: под действием механической энергии вырабатывается электричество, которое в свою очередь вызывает движение станков, машин, механизмов, подвижного состава. В транспортной отрасли хорошо известен тяговый электродвигатель, приводящий в действие колесные пары вагонов.

Использование этих устройств в режиме генератора дает возможность затормозить состав. Процесс торможения происходит за счет нагрузки, образующейся в процессе превращения механической энергии состава, находящегося в движении, в электрический ток.

Появление и развитие тяговых устройств

В самом начале, когда электрический транспорт только начал использоваться, на всех видах подвижного состава устанавливались коллекторные тяговые электродвигатели. При этом передача энергии осуществлялась по самой простой схеме, поэтому агрегатами можно было легко управлять в любом рабочем режиме. Технические и механические характеристики полностью отвечали всем требованиям транспортной специфики.

Тем не менее, в процессе эксплуатации тяговый электродвигатель постоянного тока обнаружил ряд недостатков. В первую очередь, это сам коллектор, оборудованный подвижными контактами – щетками, требующий регулярного технического обслуживания. Принимаемые меры по снижению искрения, повышению надежности коммутации, во многом усложнили устройство двигателя. В результате, его размеры заметно увеличились, а максимальная скорость вращения осталась на прежнем уровне.

Постепенно развивалось направление силовой техники на основе быстродействующих полупроводников. Это позволило заменить реостатную систему, применяемую в коллекторных агрегатах, импульсной, отличающейся повышенной надежностью и экономичностью. В дальнейшем, в вагонных парах стал устанавливаться асинхронный тяговый двигатель в качестве приводного механизма.

Основными проблемами, с которыми пришлось столкнуться при эксплуатации асинхронных двигателей, считаются сложные регулировки. Определенные трудности возникают при использовании электрического торможения, когда для этих целей служат моторы на основе короткозамкнутого ротора. В данный период идет разработка более современных тяговых приводов на основе синхронных агрегатов, в которых установлен ротор на постоянных магнитах.

Поскольку на железнодорожном транспорте до сих пор широко используются именно коллекторные агрегаты, следует более подробно рассмотреть их общее устройство и порядок работы.

Коллекторный агрегат на постоянном токе

Любой коллекторный агрегат является своеобразной электрической машиной, которая в зависимости от своего предназначения выполняет функции генератора или электродвигателя. Отличительной чертой этих устройств считается соединение якорной обмотки с коллектором.

Основным источником питания коллекторных движков служит постоянный ток. Сейчас уже выпускаются модификации многофункциональных агрегатов с невысокой мощностью, способных работать не только от постоянного, но и от переменного тока.

Стандартный тяговый электродвигатель состоит из коллектора (1), щеток (2), сердечника ротора или якоря (3), сердечника главного полюса (4), обмотки возбуждения (5), станины (6). Кроме того, сюда же включены подшипниковый щит (7), вентилятор (8), якорная обмотка (9).

Все детали соединяются в несколько конструктивных элементов. Прежде всего, это магнитная система, под влиянием которой появляется магнитное поле, а также якорь с обмоткой, вращающийся с помощью подшипников. Коллектор и другие детали разъединяются между собой воздушной прослойкой.

В агрегатах постоянного тока возникновение магнитного поля происходит с участием обмоток возбуждения. Они располагаются на полюсных сердечниках и подключены к постоянному току. Количество полюсов может быть разным, в зависимости от мощности двигателя и его использования в транспортной единице. Их число чаще всего находится в рамках от 2 до 12. Стандартная магнитная система представляет собой монолитную металлическую станину, в которой присутствуют съемные шихтованные сердечники. Чтобы понять, как взаимодействуют узлы и детали между собой, необходимо более подробно рассмотреть устройство каждого компонента.

Назначение и устройство станины

Каждый тяговый электродвигатель оборудуется станиной, используемой прежде всего в качестве магнитопровода, по которому осуществляется прохождение магнитных потоков основных и дополнительных полюсов. Еще она служит местом расположения и крепления полюсов и подшипниковой защиты.

При наличии больших нагрузок станина обычно бывает отлита из стали или сварена из толстых электротехнических стальных листов. Благодаря такой конструкции создается требуемая механическая устойчивость и высокая магнитная проницаемость. Стенки обычно имеют толщину, обеспечивающую установленный уровень магнитной индукции, а ее размеры ориентированы на поперечное сечение главных полюсов и составляют не ниже 50% этого размера.

На представленном рисунке отмечено расположение станины (1), относительно других деталей и компонентов – сердечника полюса (2), катушки обмотки возбуждения (3) и полюсного башмака (4). Между всеми элементами и якорем существует воздушная прослойка (5). Размеры диаметра изнутри станины рассчитываются так, чтобы в этом пространстве мог разместиться якорь, полюса главные и дополнительные и их обмотки.

Тяговый электродвигатель локомотива может иметь стальную литую станину с уменьшенной массой и пониженным поперечным сечением, ориентированным на оси главных полюсов. Это дает возможность равномерно распределить магнитный поток, поступающий к станине от главного полюса.

Частично станина, не выполняющая функции магнитопровода, образует коллекторное пространство с незначительной толщиной стенок, достаточной для обеспечения необходимой механической прочности. В некоторых конструкциях это место закрывается отдельными ребрами жесткости, прикрытыми тонким защитным кожухом.

Главные полюса

Тяговый электродвигатель, работающий на постоянном токе, включает в свою конструкцию обмотку возбуждения, где и появляется магнитодвижущая сила, создающая, в свою очередь, магнитное поле. В состав обмотки входят катушки, надеваемые на сердечники основных полюсов. На стороне сердечника, направленной к якорю, устанавливается полюсный наконечник, он же башмак. С его помощью осуществляется равномерное распределение магнитного потока по всей поверхности якоря. Перечисленные детали отмечены на предыдущем рисунке вместе со станиной.

На практике довольно редко используется схема, включающая в себя полюсный сердечник и полюсный башмак. Как правило, они объединяются в единое целое и образуют главный полюс. За счет этого в сердечнике полюса наступает снижение вихревых потоков, вызываемых действием пульсаций магнитной индукции в наконечниках из-за зубчатой поверхности якоря.

Для сборки полюса используются стальные лакированные листы, которые затем попадают под пресс высокого давления. Сквозь сердечник пропускаются болты или специальные заклепки, чтобы стянуть всю конструкцию. Их равномерное распределение позволяет успешно выдерживать упругость сжатых полос. Крепление полюсов к станине осуществляется с помощью болтов или шпилек.

Назначение и устройство добавочных полюсов

Каждый тяговый электродвигатель мощностью более 1 кВт оборудуется дополнительными полюсами, для того чтобы снизить количество искр, появляющихся на щетках. Их устройство очень простое, включающее в себя сердечник (1) и катушку (2), где использован медный проводник в изоляции. Его сечение рассчитывается по рабочему току двигателя, поскольку эта катушка и обмотка якоря последовательно подключаются друг к другу.

Стальной сердечник изготавливается в виде монолитной конструкции, по причине отсутствия в нем вихревых токов, так как магнитная индукция имеет очень малую величину. Местом монтажа дополнительных полюсов определен промежуток между главными полюсами, а крепление к станине выполняется специальными болтами. Величина воздушной прослойки под ними существенно превышает зазор под главными полюсами. Его регулировка выполняется при помощи специальных пластин из материалов магнитного или немагнитного типа, а окончательная величина определяется, когда тяговый двигатель постоянного тока настраивается на коммутацию при достижении минимального количества искр.

Якорь и коллектор

В состав якоря входит вал, сердечник, обмотки и коллектор. Конфигурация сердечника выполнена в форме цилиндра, а сам он изготовлен из тонких штампованных листов электротехнической стали. Для изоляции листов используется лак или бумага. В сжатом виде после сборки сердечник фиксируется нажимными шайбами. Благодаря устройству сердечника, удается компенсировать влияние вихревых токов и снизить в нем утечку электроэнергии. Охлаждение ТЭД выполняется за счет специальных каналов вентиляции, устроенных в сердечнике.

Для якорных обмоток используется медный проводник круглого или прямоугольного сечения. Он закладывается в выемки сердечника и качественно изолируется от него. Вся обмотка делится на секции, концы каждой из них соединяются с коллектором путем пайки.

В конструкцию каждого коллектора входит активная составляющая и система крепления. Изоляция медных коллекторных пластинок (7) выполняется с помощью специальных прокладок. Провода якорной обмотки припаиваются к выступу в конце элемента (5). Край пластин, расположенный снизу (6) после сборки зажимается с помощью двух нажимных колец (3). Эти кольца также изолируются, а сама изоляция утапливается на 1,5 мм внутрь скользящей поверхности коллектора.

Тяговые электродвигатель асинхронного типа

На железнодорожном транспорте асинхронный тяговый двигатель долгое время не мог использоваться из-за отсутствия в электроснабжении подвижного состава переменного трехфазного тока. Постепенно развивающееся электротехническое производство позволило создать и усовершенствовать электронику полупроводникового типа.

Таким образом, были созданы преобразователи тока и напряжения, обладающие мощностью, достаточной, чтобы обеспечить энергией асинхронный тяговый двигатель. Ведущую роль в этом деле сыграли мощные транзисторы.

Данные устройства оказались просты и надежны в эксплуатации. У них заметно снизились габаритные размеры и вес в сравнении с двигателями постоянного тока. Асинхронный тяговый двигатель не требует особого технического обслуживания, способен переходить в генераторный режим без специального переключения, а лишь под действием повышенной частоты вращения ротора. Подобная схема существенно упрощает использование системы электрического торможения.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор(неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 — беличья клетка; корпус статора.

Подшипниковые щиты

Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек — фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.

Токи в трехфазной обмотке

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на рисунке:

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой — магнитное поле повернулось еще на 120º.

К моменту времени t4 создается такая же картина поля, как и в момент времени t1,т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t1 t2магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2—4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:

где n—скорость вращения ротора, об/мин;

f — частота питающей сети;

p— число пар полюсов;

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ.

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения Δn:

Отношение частоты скольжения к частоте поля называется скольжением:

В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение SH обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора — вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя — потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е2, частота которой f2 связана со скольжением S:

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).

Последнее изменение этой страницы: 2016-04-06; Нарушение авторского права страницы

«>

Ссылка на основную публикацию
Антенна вай фай для смартфона
Всем привет!Приобрел недавно материнку от бюджетного смартфона с 4G для использования как Wi-Fi роутера, но столкнулся с очень слабым сигналом...
Адаптер для black decker
Зарядное устройство BLACK+DECKER BDC2A-QW 18 В Зарядное устройство Black & Decker BDC2A, 18 В, 2 А. Аккумулятор для Black&Decker A12...
Адаптер для подкатного домкрата
Производитель: AE&T Артикул: 1220 Страна-изготовитель — Китай Вес нетто, кг/брутто — 14/15 кг Грузоподъемность — 2 т Длина — 690-1000...
Антенна восьмёрка для цифрового телевидения
Сегодня эфирное телевидение наиболее распространено среди пользователей. Оно работает путем улавливания излучения от вещателя на приемник. В силу ряда факторов...
Adblock detector