Абсолютная диэлектрическая проницаемость единицы измерения

Абсолютная диэлектрическая проницаемость единицы измерения

Напряженность электрического поля

Какое из приведенных определений полнее? Напряженность — это сила, с которой поле действует на заря­женное тело или частицу
Напряженность — это интен­сивность поля в каждой кон­кретной точке
В некоторой точке электрического поля на точечное тело с зарядом 5 Кл дейст­вует механическая сила 2 Н. Определите напряженность в этой точке поля 5 Н/Кл
2 кг • м/А ■ с 3
0,4 кг ■ м/А • с 3
В каких единицах удобно и на практике принято измерять электрическую на­пряженность? Н/Кл
Кг ■ м/А ■ с 2
В/м
Какое наблюдение справедливо? Электрические силовые линии всегда замкнуты
Электрические силовые линии всегда разомкнуты
Как соотносятся напряженности еди-­ ничного уединенного электрического заряда на удалении от него: а) 1 м; б) 2 м? а) в 2 раза больше б)
а) в 4 раза больше б)
Напряженности в а) и б) одина­ковы

Опыт показывает, что сила взаимодействия электрических заря­дов зависит от той среды, в которой заряды находятся. Это объясня­ется тем, что под действием электрического поля зарядов молекулы среды (например, воздуха, воды) поляризуются и сами становятся источниками электрических полей. Свойство среды воздействовать на силу притяжения (отталкивания) электрических зарядов в форму­лировке закона Кулона (1.2) учитывается с помощью коэффициента е, который носит название абсолютной диэлектрической проницаемо­сти. В практической рационализированной системе единиц ε — ве­личина размерная.

Размерность можно найти, используя формулу (1.4):

В последнем выражении единица измерения, имеющая размерность Кл/В, носит название фарады (Ф). Таким образом, абсолютная диэлек­трическая проницаемость измеряется в фарадах, деленных на метры.

Абсолютную диэлектрическую проницаемость вакуума называют электрической постоянной ε:

Величину, показывающую, во сколько раз абсолютная диэлектриче­ская проницаемость е среды больше электрической постоянной е, на­зывают относительной диэлектрической проницаемостью εr или просто диэлектрической проницаемостью.

Относительная диэлектрическая проницаемость — величина безраз­мерная.

Ниже приведены значения относительной диэлектрической прони­цаемости некоторых веществ:

Вода дистиллированная. 80,0

Трансформаторное масло 2,3

С учетом (1.5) выражение (1.2) можно записать в следующем виде:

Из формулы (1.6) видно, что при прочих равных условиях сила взаимодействия двух зарядов тем меньше, чем больше величина ег сре­ды. Например, два одинаковых заряженных тела в дистиллированной воде взаимодействуют с силой в 80 раз меньше, чем в вакууме.

Относительная диэлектрическая проницаемость показывает, во сколько раз при прочих равных условиях сила взаимодействия электри­ческих зарядов, а следовательно, и напряженность электрического поля в некоторой среде меньше, чем в вакууме.

Относительная диэлектрическая проницаемость вещества εr может быть определена путем сравнения ёмкости тестового конденсатора с данным диэлектриком (Cx) и ёмкости того же конденсатора в вакууме (Co):

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов. Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Ёмкость конденсаторов определяется:

где εr — диэлектрическая проницаемость вещества между обкладками, εо — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц εr начинает падать. В оптическом диапазоне εr составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. [1] В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения [источник не указан 665 дней] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 10 12 (инфракрасная область) можно прочитать на [1] (англ.)

Читайте также:  Геотекстиль срок службы в земле

Данный раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях является основополагающим для электротехники и электроники , и изучает физические явления, возникающие при распределении и движении электрических зарядов.

Основополагающая причинно-следственная связь в электромагнитных явлениях такова: неравномерное распределение зарядов вызывает электрическое поле; изменение положения зарядов, их движение – это электрический ток, который вызывает магнитное поле; изменение тока вызывает излучение электромагнитного поля.

ЭЛЕКТРОСТАТИКА

В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между такими зарядами, было отмечено еще во времена Гомера. Слово “электричество” происходит от греческого e lektron (янтарь), поскольку первые описанные в истории наблюдения электризации трением связаны именно с этим материалом. В 1733 Ш. Дюфе (1698–1739) открыл, что существуют электрические заряды двух типов. Заряды одного типа образуются на сургуче, если его натирать шерстяной тканью, заряды другого типа – на стекле, если его натирать шелком. Одинаковые заряды отталкиваются, разные – притягиваются. Заряды разных типов, соединяясь, нейтрализуют друг друга. В 1750 Б. Франклин (1706–1790) разработал теорию электрических явлений, основанную на предположении, что все материалы содержат некую “электрическую жидкость”. Он полагал, что при трении двух материалов друг о друга часть этой электрической жидкости переходит с одного из них на другой (при этом общее количество электрической жидкости сохраняется). Избыток электрической жидкости в теле сообщает ему заряд одного типа, а ее недостаток проявляется как наличие заряда другого типа. Франклин решил, что при натирании сургуча шерстяной тканью шерсть отнимает у него некоторое количество электрической жидкости. Поэтому он назвал заряд сургуча отрицательным.

Взгляды Франклина очень близки современным представлениям, согласно которым электризация трением объясняется перетеканием электронов с одного из трущихся тел на другое. Но поскольку в действительности электроны перетекают с шерсти на сургуч, в сургуче возникает избыток, а не недостаток этой электрической жидкости, которая теперь отождествляется с электронами. У Франклина не было способа определить, в каком направлении перетекает электрическая жидкость, и его неудачному выбору мы обязаны тем, что заряды электронов оказались “отрицательными”. Хотя такой знак заряда вызывает некоторую путаницу у приступающих к изучению предмета, эта условность слишком прочно укоренилась в литературе, чтобы говорить об изменении знака заряда у электрона после того, как его свойства уже хорошо изучены.

С помощью крутильных весов, разработанных Г. Кавендишем (1731–1810), в 1785 Ш. Кулон (1736–1806) показал, что сила, действующая между двумя точечными электрическими зарядами, пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними, а именно:

где F – сила, с которой заряд q отталкивает заряд того же знака q’, а r – расстояние между ними. Если знаки зарядов противоположны, то сила F отрицательна и заряды не отталкивают, а притягивают друг друга. Коэффициент пропорциональности K зависит от того, в каких единицах измеряются F, r, q и q’.

Единицы измерения заряда первоначально не существовало, но закон Кулона дает возможность ввести такую единицу. Этой единице измерения электрического заряда присвоено название “кулон” и сокращенное обозначение Кл, C. Один кулон (1 Кл) представляет собой заряд, который остается на первоначально электрически нейтральном теле после удаления с него 6,242*10 18 электронов.

Если в формуле (1) заряды q и q’ выражены в кулонах, F – в ньютонах, а r – в метрах, то K = 8,9876*10 9 H*м 2 /Кл 2 , т.е. примерно 9*10 9 Н*м 2 /Кл . Обычно вместо K используют константу e 0 = 1/4 π K. Хотя при этом выражение для закона Кулона немного усложняется, это позволяет обходиться без множителя 4 π в других формулах, которые применяются чаще закона Кулона.

Читайте также:  Бытовки из дерева для дачи

Электростатические машины и лейденская банка

Машину для получения статического заряда большой величины путем трения изобрел примерно в 1660 О. Герике (1602-1686), описавший ее в книге "Новые опыты о пустом пространстве" ("De vacuo spatio", 1672). Вскоре появились другие варианты такой машины. В 1745 Э. Клейст из Каммина и независимо от него П. Мушенбрук из Лейдена обнаружили, что стеклянную посудину, выложенную изнутри и снаружи проводящим материалом, можно использовать для накопления и хранения электрического заряда. Стеклянные банки, выложенные изнутри и снаружи оловянной фольгой — так называемые лейденские банки — были первыми электрическими конденсаторами. Франклин показал, что при зарядке лейденской банки наружное покрытие из оловянной фольги (наружная обкладка) приобретает заряд одного знака, а внутренняя обкладка — равный по величине заряд противоположного знака. Если обе заряженные обкладки приводятся в соприкосновение или соединяются проводником, то заряды полностью исчезают, что свидетельствует об их взаимной нейтрализации. Отсюда следует, что заряды свободно перемещаются по металлу, но не могут перемещаться по стеклу. Материалы типа металлов, по которым заряды передвигаются свободно, были названы проводниками, а материалы типа стекла, через которые заряды не проходят, — изоляторами (диэлектриками).

Диэлектрики

Идеальный диэлектрик – это материал, внутренние электрические заряды которого связаны настолько прочно, что он не способен проводить электрический ток. Поэтому он может служить хорошим изолятором. Хотя идеальных диэлектриков в природе не существует, проводимость многих изоляционных материалов при комнатной температуре не превышает 10 –23 проводимости меди; во многих случаях такую проводимость можно считать равной нулю.

Диэлектрическая проницаемость

Одним из важнейших параметров диэлектрика является его диэлектрическая проницаемость.

Существует три физические единицы диэлектрической проницаемости, однозначно связанные между собой.

Значение диэлектрической проницаемости различных веществ приведены в таблице ниже.

Значения диэлектрической проницаемости различных веществ

Проводники

Кристаллическая структура и распределение электронов в твердых проводниках и диэлектриках сходны между собой. Основное различие заключается в том, что в диэлектрике все электроны прочно связаны с соответствующими ядрами, тогда как в проводнике имеются электроны, находящиеся во внешней оболочке атомов, которые могут свободно перемещаться по кристаллу. Такие электроны называют свободными электронами или электронами проводимости, поскольку они являются переносчиками электрического заряда. Число электронов проводимости, приходящихся на один атом металла, зависит от электронной структуры атомов и степени возмущения внешних электронных оболочек атома его соседями по кристаллической решетке. У элементов первой группы периодической системы элементов (лития, натрия, калия, меди, рубидия, серебра, цезия и золота) внутренние электронные оболочкизаполнены целиком, а во внешней оболочке имеется один-единственный электрон. Эксперимент подтвердил, что у этих металлов приходящееся на один атом число электронов проводимости приблизительно равно единице. Однако для большинства металлов других групп характерны в среднем дробные значения числа электронов проводимости в расчете на один атом. Например, у переходных элементов – никеля, кобальта, палладия, рения и большинства их сплавов – число электронов проводимости на один атом равно примерно 0,6. Число носителей тока в полупроводниках гораздо меньше. Например, в германии при комнатной температуре оно порядка 10 –9 . Чрезвычайно малое число носителей в полупроводниках приводит к возникновению у них множества интересных свойств.

Тепловые колебания кристаллической решетки в металле поддерживают постоянное движение электронов проводимости, скорость которых при комнатной температуре достигает 10 6 м/с. Поскольку это движение хаотично, оно не приводит к возникновению электрического тока. При наложении же электрического поля появляется небольшой общий дрейф. Этот дрейф свободных электронов в проводнике и представляет собой электрический ток. Поскольку электроны заряжены отрицательно, условное направление тока (как движение положительных зарядов) противоположно направлению их дрейфа.

Разность потенциалов

Для описания свойств конденсатора необходимо ввести понятие разности потенциалов. Если на одной обкладке конденсатора имеется положительный заряд, а на другой – отрицательный заряд той же величины, то для переноса дополнительной порции положительного заряда с отрицательной обкладки на положительную необходимо совершить работу против сил притяжения со стороны отрицательных зарядов и отталкивания положительных. Разность потенциалов между обкладками определяется как отношение работы по переносу пробного заряда к величине этого заряда; при этом предполагается, что пробный заряд значительно меньше заряда, находившегося первоначально на каждой из обкладок. Несколько видоизменив формулировку, можно дать определение разности потенциалов между любыми двумя точками, которыемогут находиться где угодно: на проводе с током, на разных обкладках конденсатора либо просто в пространстве. Это определение таково: разность потенциалов между двумя точками пространства равна отношению работы, затрачиваемой на перемещение пробного заряда из точки с более низким потенциалом в точку с более высоким потенциалом, к величине пробного заряда. Снова предполагается, что пробный заряд достаточно мал и не нарушает распределения зарядов, создающих измеряемую разность потенциалов. Разность потенциалов V измеряется в вольтах (В) при условии, что работа W выражена в джоулях (Дж), а пробный заряд q – в кулонах (Кл).

Читайте также:  Внутренняя отделка газобетонного дома

Постоянный ток

В 1780 Л. Гальвани (1737–1798) заметил, что заряд, подводимый от электростатической машины к лапке мертвой лягушки, заставляет лапку резко дергаться. Более того, лапки лягушки, закрепленной над железной пластинкой на латунной проволочке, введенной в ее спинной мозг, дергались всякий раз, как только касались пластинки. Гальвани правильно объяснил это тем, что электрические заряды, проходя по нервным волокнам, заставляют мышцы лягушки сокращаться. Это движение зарядов было названо гальваническим током.

После опытов, проводившихся Гальвани, Вольта (1745–1827) изобрел так называемый вольтов столб – гальваническую батарею из нескольких последовательно соединенных электрохимических элементов. Его батарея состояла из чередовавшихся медных и цинковых кружочков, разделенных влажной бумагой, и позволяла наблюдать те же явления, что и электростатическая машина.

Повторяя опыты Вольты, Никольсон и Карлейль в 1800 обнаружили, что посредством электрического тока можно нанести медь из раствора сульфата меди на медный проводник. У. Волластон (1766–1828) получил такие же результаты с помощью электростатической машины. М. Фарадей (1791–1867) показал в 1833, что масса элемента, получаемого с помощью электролиза, производимого данным количеством заряда, пропорциональна его атомной массе, деленной на валентность. Это положение ныне называют законом Фарадея для электролиза.

Поскольку электрический ток представляет собой перенос электрических зарядов, естественно определить единицу силы тока как заряд в кулонах, который ежесекундно проходит через данную площадку. Сила тока 1 Кл/с была названа ампером в честь А. Ампера (1775–1836), открывшего многие важные эффекты, связанные с действием электрического тока.

Источники постоянного тока и напряжения (ЭДС)

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2019 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2019 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Ссылка на основную публикацию
Svb 2400 садовый пылесос
Инструкции и файлы Файл Страниц Формат Размер Действие 2 pdf 114.3KB Чтобы ознакомиться с инструкцией выберите файл в списке, который...
Ka7500b переделка блока питания
Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается...
Kaiser kct 6515 f отзывы
Мы зарегистрировали подозрительный трафик, исходящий из вашей сети. С помощью этой страницы мы сможем определить, что запросы отправляете именно вы,...
Sy15p 101r как проверить
Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от...
Adblock detector